Royal Entomological Society

HANDBOOKS FOR

THE IDENTIFICATION

OF BRITISH INSECTS

To purchase current handbooks and to download out-of-print parts visit:
http://www.royensoc.co.uk/publications/index.htm

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: England \& Wales License.

Copyright © Royal Entomological Society 2012

ROYAL ENTOMOLOGICAL SOCIETY OF LONDON Vol. VI. Part $2(c)$. HANDBOOKS FOR
THE IDENTIFICATION
OF BRITISH INSECTS

HYMENOPTERA

2. SYMPHYTA. SECIION (c)

By

R. B. BENSON.

LONDON
Published by the Society
and Sold at its Rooms
41, Queen's Gate, SW. W 3

HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS

The aim of this series of publications is to provide illustrated keys to the whole of the British Insects (in so far as this is possible), in ten volumes, as follows:
I. Part 1. General Introduction.
Part 9. Ephemeroptera.
2. Thysanura.
3. Protura:
", 4. Collembola.
, 5. Dermaptera and Orthoptera.
, 6. Plecoptera.
, 10. Odonata.
\# 11. Thysanoptera.
" 12. Neuroptera.
, 13. Mecoptera.
" 14. Trichoptera.
, 7. Psocoptera.
, 8. Anoplura.
II. Hemiptera.
III. Lepidoptera.
IV. and V. Coleoptera.
VI. Hymenoptera : Symphyta and Aculeata.
VII. Hymenoptera : Iehneumonoidea.
VIII. Hymenoptera : Oynipoidea, Chalcidoidea, and Serphoidea.
IX. Diptera: Nematocera and Brachycera.
X. Diptera: Cyclorrhapha.

Volumes II to \mathbf{X} will be divided into parts of convenient size, but it is not possible to specify in advance the taxponomic content of each part.

Conciseness and cheapness are main objectives in this new series, and each part will be the work of a specialist, or of a group of specialists. Although much of the work will be based on existing published keys, suitably adapted, it is expected that it will also include much new and original matter.

Parts will be issued, separately paged and priced, as they become available.

Orders for the Series or for separate parts may be placed with the Registrar at the Society's rooms now, but prices can only be quoted for those parts already in the press.

The Society is indebted to the Royal Society for a grant towards the cost of initiating this series of $H a n d b o o k s$.

A list of parts now available appears on the back cover

Page 14, line 23, for " 4,5 and 6 " read " 3,4 and 5 ".
Page 21, top line, for " medial cell" read " cell 3R1 ".
Page 29, line 10 up and 3 up, for " basal stalk " read " apical stalk ".
Page 40 , line 18 up, for "femorata "read "femoratus".
line 8 up, for " lutea" read " luteus ".
Page 41, line 5, for "connata" read "connatus".
line 15 , for "femorata " read "femoratus".
", line 14 up, for "lutea" read "luteus".
," line 12 up , for "connata" read "connatus ".
Page 42, bottom line, for " sylvaticum "read " latreillei ".
Page 44, line 11 up, add (" $\dagger \dagger$ Morice, 1913, Ent. mon. Mag. 49 : 143) ".
Page 45, top line, add "and in Ireland".
Page 61 , line 3 up, for " subfamily" read "tribe".
Page 83, line 11 up, for "Prince horpe" read "Princethorpe".
line 10 up, for "Saun" read "Saunt".
Page 88 , line 3 up, for " as broad as long " read " as long as broad".
Page 95, line 10, delete "(var. filiformis Klug)".
Page 97, line 10, for "Perilista" read " Periclista".
Page 98, lines 25-26, delete " and hind wing with or without an enclosed cell".
lines 29-30, delete " hind wing without an enclosed cell".
Page 100, line 16 up, add " Hind wing without enclosed cell". line 10 up , add "Hind wing with an enclosed cell".
Page 108, line 24, for "Fenusa " read "Profeniusa". line 33, for "etpraea" read "petraea".
Page 127, line 10 up , for " $231-51$ " read " $231-5$ ".

HYMENOPTERA
 (SYMPHITA)

By Robert B. Benson.

Subfamily Nematinae.

Of the threo tribes in this sulfamily onty the Cladiini and Nematini occur in Britain; the Pristolini are, so far as is known, conlined to Nurth America. About 750 species are so far known, in uver 30 genera, contined to the nort hern hemisphere oxcept for a few on the mountains of tropical regions. The treatraent in this Handbook is novel, and many of the characters fir separating genera are here used for the first time.*

Key to die Thiges of Nematinae.

 modial constration ; furb wings always reach the apex of abdomen

3 griarm, Cladifin, p. 3 34

13 gintith, Nesatisi, P. 143

Tribo Cladiini.

A small trile of about 40 species (9 British) in 3 genera. The laywar are associated with eatkin-bearing trees (Salicacene, Betulaceae and Clunaceae) or Rosaceae. Exeept in Trichiocampus, the udults are matinty biack inseets with legs white or yelluw.

Kify mo Generd af (badini.

Antenan of 3 with fagellar sagments boyons the first at most only fwollen
 neginents are at dense four times longar than broad nod ure not producend
 tho apex of the suwshenth (figs. 3.51 3) : head nbove eitlew shining or cull with surfere senlpsture
 megmeata are each only about three timos longer than hround and at hatit the
 reach back farther than the apex of the suwsheath (tig. 3.ous. Heat shaning above. withont surface scupture or hair-warts. latar hind tibial apur murh longer than the upical breadth of the tibin, Tarsoll claws with a largo subupicel touth. siaw divided ints 8 segmentrs surung arined with

[^0]

342
pil.

Figs. 341-5.-Basal segments of antenna in Cladini: 341, Trichiocampus viminalis ot; 342, Priophorus pilicornis ó; 343, P. pallipes ox; 344, Triehiocampus viminclis + ; 345, Priopharus pallipes ㅇ.
Figs. 346-9,-Antenna in Cladius spp.: 346, diffomis 우; 347, pectinicomis 早:
348, difformis o ; 349, pectinticomis ó.

2 (1) Abdomen mainly black. Hind basitaraus about as long as the 3 following tarsal segments. Clypeus broadly emarginate in front and flat. Head above shining or dull. Claws with small or Large inner tooth. Saw of Cladtus or Trichocmmpus type. 6 spp. Priophorus Dahlbom. p. 141
Abdomen yellow. Hind basitarsus only as long as the 2 following tarsal segments together. Clypeus strongly excised in front and labrum with the front margin reflexed. Head shining above without surface sculpture. Claws with large inner tooth. Saw of 오 without lateral teeth but with a straight ventral margin bearing 12-14 small simple teeth (ef. fig. 362) 1 sp.

Trichiocampus Hartig, p. 143

Genus Cladius Rossi.

A genus of about eight or nine known species of which two occur in Britain ; they are easily distinguished in the male, but with difficulty in the female (saw, fig. 361 ; male genitalia, fig. 354).

Key to Species of Cladius.

A Antenna of o^{2} (fig. 349) with almost equally long epical projections to the 3 basal flagellar segments, a shorter projection on the fourth and a minute one on the fifth; the projection on the first one and a half to twice as long as the main part of the following segment. Antenna of q (fig. 347) with minute apical projections above on segments $1-3$ or $4 . \quad 5-7 \mathrm{~mm}$.
Larva destructive to wild and culdivated Rosa and Fragaria, but will also feed on Sanguisorba officinalis L. One of the commonest of sawfies throughout Britain and Ireland. V-IX (with 2 or more broods). All Europe to Caucasus, Asia Minar and Siberia to Japan............ ${ }^{\prime}$ and 9 pectinicornis (L.)
Antenna of σ (fig. 348) with long apical projections to the 2 basal flagellar eegments, a shorter one on the third and a minute one on the fourth; the projection on the first at most one and a quarter times as long as the main part of the following segment. Antenna of ㅇ (fig. 346) with minute apical projections above only on the first and second flagellar segments. $\quad 5-7 \mathrm{~mm}$.

Larva likewise destruetive to wild and cultivated Rosa and Fragaria; ulso on Comarum palustre L. and Filipendula ulmaria (L. Maxim). Common. throughout Britain and Ireland. V-1X (2 or more broods) (\dagger Perkins, 1929, Trans. Devon. Ass. Adv. Sci. 61:299). All Europe to Caucasus, and in North America (introduced) 6 and $\%$ difformis (Panzer)

Genus Priophorus Dahlbom.

A genus of about 20 known species. P. lativifrons Benson has been wrongly treated by Zhelochovtzev in his recent revision of the Russian Cladiini (1952, Zool. Zh. 31 : 257-68) as a synonym of Cladius (Trichiocampus) eradiatus (Hartig, 1837), which is here treated for the first time as a synonym of Cladius pilicornis Curtis, 1833, from recent type study. P. pallipes Lep. is noteworthy in having the left and right halves of its penis valve asymmetrical (figs, 359-60).

Key to Species of Priophorus.

Antenna of ξ with no dentate projection below at the base of the third segment (fig. 343), and in the ρ this segment almost straight (fig. 345). Head above dull with fine surface sculpture or hair-warts. Claws sub-bifid.
(Mesopleural hair-patch not broken through by a glabrous patch in sternopleural region (cf. figs. 363 and 364). Saw of Oladius type (fig. 361). Attached to Rosaceas or Berula) . .. 2
Antenna of σ with third segment bearing below a dentate basal projection (fig. 342) and in the f this segment contracted medially and arched ($c f$. fig. 344). Fither the head above is entirely smooth without surface seulpture or hair-warts, or claws have only a small inner tooth (loss than half as long as end tooth).

Ftes. 350-3.-Sawsheath from above in Cladiini : 350, Cladius pectinicornis ; 351, Priophorus pallipes; 352, P. brullei ; 353, P. pilicomis.
Figs. 354-60.-Penis valves in Cladiini : 354, Cladius difformis; 355, Trichiacampus viminalis; 356, Priophorus pilicornis; 357, P. ulmi; 358, P. brullei; 359, P. pallipes (left): 360, P. pallipes (right).
Figs, 361-2.-Saw in Cladiini : 361, Cladius pectinicomis; 362, Priophorus pilicornis.

2 (1) Inner hind tibial spur little longer than apical breadth of tibia. Wings infuscate and abdomen black, though usually with a brown spot in the middle of the first tergite. Median fovea between the antennae separated from the frontal basin above by an unbroken ridge. Sawsheath of 9 strongly expanding towards the apex in dorsal view and then contracting behind to a blunt point (fig. 352), so that its greatest breadth is more than the apical breadth of the hind tibia; 解 genitalia fig. $358,4.5-7 \mathrm{~mm}$.

Larva on Rubus, especially R. idneus L., and also on Sorbus aucuparia L. Common locally throughout Britain and Ireland; V-VIII (2 or more broods). $\overrightarrow{0}$ rare. All Europe to Caucasus and East Siberia; introduced into New Zealand......................... ${ }^{\text {a }}$ and of ($=$ tener Hartig) brullei Dahlbom
Inner hind tibial spur about one and a half times as long as the apical breadth of the tibia and almost half as long as the basitarsus. Wings subhyaline. Abdomen black or piceous but without brown medial spot on the first
tergite. Ridge on the head between the median fovea and the frontal basin usually notched, or more or less broken through. Sawsheath of of nearly parallel-sided in dorsal view, bluntly rounded behind, with its greatest breadth much less than apex of hind tibia (fig. 351); of genitalia with right and left penis valves asymmetrical (figa, 359 and 360). $5-8 \mathrm{~mm}$.

Larva on Rosaceas such as Crataegus, Fragaria, Laurus, Prunus, Pyrus and Sorbus; also recorded from Betula. Common throughout Britain and Ireland. $V-I X$ (2 or more broods). o normally common. All Europe to Caucasus and Transcaucasia, and to E. Siberia and Japan
σ° and 9 ($=$ padi L, auctt. nee L.) pallipes (Lepeletier)
3 (1) Head on frons and temples above smooth and shining without surface sculpture or hair-warts. Mesopleural hair-patch broken through by a glabrous band in sterno-pleural region (fig. 363). क genitalia fig. 357. Pale parts of legg yellowish. Attached to Ulmus.. 4

- Head dull above on frons and temples, and covered with minute hair-warts, Mesopleural hair-patch not broken through by a glabrous band in sternopleural region (fig. 364); g^{2} genitalia fig. 356. Pale parts of legs almost white.

Larva on Crataegus. Common throughout Britain N. to Perth, also in Ireland. V-VIII (2 or more broads). N. and C. Europe.
σ° and \circ 아 (Cladius pilicornis Curtis, $1833=$ Cladius (Trichiocampus) eradiatus Hartig, 1857, syn. nov. = drewseni Thomson). . pilicornis (Curtis)
Wings more or less infuscate and abdomen with brown spot in middle of first tergite. Claws sub-bifid with inner tooth strong in 9, , and in ${ }^{*}$ more than half as long as end tooth. 9 saw of Cladius-type ($\mathrm{c} /$. fig. 361). $\quad 5-7.5 \mathrm{~mm}$.

Larva on Ulmus. Local in England to Dumfries in Scotland; also Dublin and Wichlow in Ireland. V-VIII (2 braods). All Europe to Cancasus and Asia Minor....................... ${ }^{*}$ and 아 ($=$ rufipes Lepeletier) ulmi (L.)
Wings subhyaline and abdomen not marked with brown on first tergite. Claws with small inner tooth not half as long as end tooth in f, and scarcely longer than ita basal breadth in of. 乌 saw of Trichiocampus type (ef. fig. 302) $5-6.5 \mathrm{~mm}$.

Larea on Ulmus. England: Isles of Scilly, Devon, Somerset, Glos,, Berks., Hants., Herts,, Beds., Cambs, and Suffolls; Ireland: Co. Dublin (\dagger Benson, 1936, Ent. mon. Mag. 72:205-6). V-WIII (2 or more broods). Not yet recorded outside British Isles., and $^{\text {and }}$ and laevifrons Benson

Genus Trichiocampus Hartig.

This genus contains only six known species, of which only one of the two European species is British. The larvae are highly coloured with dark spots on a bright background and feed gregariously, at least in their early stages, on Salicaceae and Fagaceae.

The only British specios is $7-9 \mathrm{~mm}$. long ; body mainly yellow with only the hendcapsule, upperside of antennae, pronotum (in middle), meso- and metanotum and mesosternum black; wings yellowish at their bases and subhyaline to subinfuscate at their apices; stigma brown in the middle with darker margins, costa yellow, rest of venation brown to piceous. Saw cf. fig. 362 ; ठ̄ genitalia fig. $3 \overline{5} 5$.

Larvae gregarious on Populus and sometimes Salix. Throughout Britain N. to Inverness, locally abundant; also in Ireland. V-VIII (2 or mare broods). All Europe to E. Siberia and N. America.... σ^{*} and 9 viminalis (L.)

Tribe Nematini.

The Nematini increase progressively northwards proportionately to all other sawflies, until in arctic regions they represent almost the entire sawfly fauna and are rich in species.

In the higher members of this group the complexes of closely related
forms are still very imperfectly investigated, and one of my worst problems has been the segregating of species-groups into definable genera.

Except for the odd species of Pristiphora in the highlands of Borneo and Brazil, the tribe is, so far as is known, confined to the northern hemisphere. The foodplant association is mainly with deciduous catkin-bearing trees, especially Salicaceae, but the total foodplant range is wide and includes Gramineae by one section of Pachynematus, and Coniferae by Anoplonyx and certain groups of both Pachynenatus and Pristiphora: no other Tenthredinid tribe is known to attack Coniferae.

Figs. 363-4.-Mesopleura of Priophorus to show pilosity of sterno-pleural line in : 363, Laewifrons; 364, pilicomis.

The Nematini contain about 700 valid described species in the world, divided into nearly 30 genera, but it can scarcely be said that more than a beginning has been made to explore the Nematine fauna of the whole of the northern hemisphere. One hundred and eighty British species have so far been recognized, divisible into 16 genera.

In the key that follows the extremely awloward second couplet is due to the tiresome variability of the venation of Dineura, which in the last resort has to be distinguished from Nematus by the form of its mandibles.

Key to Genera of British Nematimi.

1 Wings normal ; fore wings reaching beyond apex of abdomen................ 2

- Wings reduced so that fore wings do not reach apex of abdomen and have abnormal venation, (High-mountain Amauronematus and Pristiphora spp, ? cf. fig. 501)
2 (1) Coll 2 RI of fore wing without cross-vein $2 r$; vein Sc before point of origin of vein M from R; anal cell without an enclosed basal loop (figs. 375-8). Left mandible in lateral view with a swollen base to a thin blade-like apex (fig. 380).
- Either cell 2 R1 of fore wing with cross-vein $2 r$ indicated (figs, 367-9, 372-3), or Sc at or beyond point of origin of vein M from \mathbf{R} (fig. 369), ar anal cell with an enclosed basal loop (figs. 370-1). Left mandible often almost evenly tapering from base to apex (fig. 379).
3 (2) Anal cell of fore wing with basal loop complete (figs. 367-8, 370-1) 4 Anal cell of fore wing without a closed basal loop (figs, 369 and 372)........ 7
(3) 2 Rl of fore wing with cross-vein 2 r indicated (figs. 367-8).................. . . . 5

2R1 of fore wing without cross*vein 2 r indicated figs. $370-1$) 6
4) Fore wing with cross-vein lm-cu received in cell $1 R \mathrm{RS}$ and $2 \mathrm{~m}-\mathrm{cu}$ in RDS fig. 367) ; constricted portion of anal cell much shorter than basal loop; \mathbf{C} strongly dilated apically so that the intercostal cell at the point of origin of $\mathrm{Rs}+\mathrm{M}$ is no wider than the width of the middle of cell c . Antenna. short, less than twice as long as breadth of head; second segment much longer than broad. Malar space longer than apical breadth of second antennel segment. Larvae in fruit of Rosaceae. 9 spp.

Hoplocampa Hartig, p. 149

- Fore wing with eross-vein $1 \mathrm{~m}-\mathrm{cu}$ and 2 m -cu received in cell 1 RS (fig, 368); constricted portion of anal cell much longer than basal loop; C not strongly dilated apically so that at the point of origin of vain $R S+M$ from R, C is scarcely wider than cell c at that point. Antenna long, more than twice as long as breadth of head; second segment not longer than broad. Malar space shorter than apical breadth of second antennal segment. Larvae on Betulaceae and Corylaceae. 2 spp............. Hemichroa Stephens, p. 152
6 (4) Tarsal claws simple. U so dilated at apox that at the point of origin of vein $\mathrm{BS}+\mathrm{M}$ from R cell c is no wider than the width of vein C in the middle (fig. 371). Sawsheath in dorsal view broadening towards apox, where it is emarginate. Attached to Larix. 1 sp..........Anoplonyx Marlatt, p. 153
- Tarsal claws with large inner tooth. C not strongly dilated at apex so that at the point of origin of vein RS $+M$ from R the intercostal cell o is about as wide as vein C at the same point (fig. 370). Sawsheath in dorsal view tapering to a point at apex. Attached to Alnus. I sp.

Platycampus Schiödte, p. 153
7 (3) Antenna less than twice as long as breadth of head; eyes converge in front so that distance between them is less than one and a half times height of an eye. Malar space less than apical breadth of second antennal segment. Fore wing with vein M joining R beyond intercostal vein 8C (figs. 372-3); anal vein straight, not leaving jugal fold at its apex to approach $\mathbf{M}+$ Cul; vein 2 r present.

- Antenna more than twice as long as breadth of head; eyes further apart in front than one and a half times height of an eye. Malar space greater than apical breadth of second antennal segment. Intercostal vein Sc usually beyond junction with M and R (fig, 369); anal vein apically leaves jugal fold and convorges slightly towards $\mathrm{MI}+\mathrm{CuI}$; vein 2 r present or absent.

C so strongly dilated that cell c at point of origin of vein $\mathrm{RS}+\mathrm{M}$ with R is no wider than width of C in the middle. Attached to Rosaceae and Betulaceae. $3 \mathrm{spp} . .$. Dineura Dahlbom, p. 154
8 (7) Large specios, $6-7 \mathrm{~mm}$. Fore wing with apex of C so strongly dilated that at the point of origin of vein $\mathrm{RS}+\mathrm{M}$ from R cell, c is no wider than the width of vein C in the middle (fig, 372); anal cell in hind wing clozed. Black species marked with yellow and orange on head and thorax. Claws with large inner tooth. Attached to Quercus. 1 sp..... Mesoneura Hartig, p. 154

- Small species, $3-4 \mathrm{~mm}$. Fore wing with cell c about as wide as vein C at the point of origin of vein RS + M from R (fig. 373); anal cell absent from hind wing (fig. 374). Black species with only labrum and tegulae on hoad and thorax. Claws without inner tooth. Larvae leaf-mining in Ranunculaceae. 2 spp........ ($=$ Pelmatopus Hartig) Pseudodineura Konow, p. 155
9 (1\&2) Apex of vein C of fore wing so strongly swollon that at the point of origin of vein RS $+M$ from R cell e is only abont as wide as the medial width of vein C (fig. 376). Clypeus subtruncate in front with, at the most, a slight emargination in front to a depth of less than one-third total length of clypeus. Tarsal claws various, but usually with inner tooth small and widely separated from end tooth (fig. 381), though Stauronematus has a strong inner tooth and also a basal lobe (fig. 383).
.10

Ftas, 365, 367-73, 375-7.-Right fore wing in Nomatinae: 365, Priophorus省; 367, Hoplocampa; 368, Hemichroa; 369, Dineura; 370, Platycampus; 371, Anoplonyx; 372, Mesoneura; 373, Pseudodineura; 375, Euura; 376, Pristiphora; 377, Nematus.

Fres. 366, 374, 378.-Right hind wing in Nematinae: 366, Priophorus:
374, Pevdodineura; 378, Nematus.

Apex of vein C less strongly swollen so that at the point of origin of $R S+M$ from R cell c is at least one-half the width of vein C at that point (figs. 375 and 377). Clypeus usually deeply excised in front to a depth of ait least one-third total length of clypens. Tarsal claws various, but usually with at least a strong inner tooth in addition to end tooth. 11
10 (9) Claws with a swollen basal lobe in addition to an inner tooth, which is erect and well separated from end tooth and longer than it (fig. 383). Clypeus subtruncate. of with antenna laterally compressed (third segment scarcely four times longer than broad) with each segment produced slightly at apex beneath.
(Larva free living but builds palisade of dried saliva round portion of leaf of Populus or solix on which it is feeding)
$(=$ Stauronema Bens. nec Sollas) Stauronematus Benson, p. 155

- Claws usually with small inner tooth but may be sub-bifid or simple but without an enlarged basal lobe (figs. 381-2). Clypeus subtruncate or medially emarginate in front, Antenna usually setiform with simple segments. $3 \mathrm{spp} \ldots(+$ Lygaeonematus and Micronematus) Pristiphora Latreille, p. 156

Figs. 379-80.-Left mandible in: 379, Dineura; 380, Nematus.
Figs. 381-3.-Tarsal claw in: 381, Pristiphora; 382, Nematus; 383, Stauronematus.

11 (9) Frontal crost in lateral view appears angularly produced between the antenna (fig. 385) ; inner orbits between the eyes and the antennae, in dorsal aspect, often convex (fig, 387). Mouthparts with elongate maxillary palps (as long as cardo + stipes of maxilla) with unequal segments, the third of which is the longest (fig. 388).
(In some very small mountain (arctic) species, under 6 mm. long, crest between antennae only slightly developed (fig. 660), scarcely more proportionately than in some large Amauronematus (fig. 384) but yot strikingly more so than in amall Amauronematus of the same size). 12

- Frontal crest between the antennae very little developed in large species (fig. 384) and scarcely at all in small species (under 6 mm .), so that the head appears evenly convex between the antennae in lateral view and the whole face is very long and flat: inner orbits searcely convex and vory deeply deprossed outside the antennal sockets (fig. 386). Mouthparts often elongated, with maxillary palp short (shorter than cardo + stipes of maxilla) and its segments almost of equal length (fig. 389).
(Antenna often black and shorter than $\mathrm{C}+$ stigma of fore wing. Whole mesonotum with scutellum and mesopleura often dull with coriaceous
sculpture. Hind tibial spurs of almost equal length and scarcely longer then apical width of hind tibia. Larva, free living or inhabiting catkins, on Solix, Betula or Populus). 21 spp....... Amauronematus Konow. p. 176
12 (11) Apex of hind tibia and hind basitarsus groatly expanded, like leaves (figs, 390, 652) ; breadth of basitarsus greater than half the length of the rest of the tarsal segments together. Large species ($7.5-10 \mathrm{~mm}$.) with a red-banded, or occasionally an entirely black, abdomen. 4 spp.... Croesus Leach p. 209
- Apex of hind tibia and hind basitarsus normal (fig. 391); breadth of basitarsus much less than the length of the rest of the tarsal segments together.... 13

386
AM.

NEM. 387
$A M$

13 (12) Species, if brown, then of slender build and the stigma not yellow with a dark basal smudge. Sawsheath never twice as broad at base as the apical width of the hind tibia; eighth of tergite with a well marked apical projection, the procidentia (figs. $745-6,782$ etc.). Fore wing with cell 2RS often not longer than its apical breadth.
Broad brown species marked with black; stigma yellow with a piceous basal smudge. Sawsheath (figs. 589-91) in dorsal view very broad at the base, where it is almost twice as wide as the width of the apex of the hind tibia, not reaching so far back as the very long cerci and subtruncate or tapering at the apex, with a very stout segmented and ornamented saw (figs. 582-3); eighth of tergite (fig. 588) produced apically in the middle, but without a clearly defined procidentia. Fore wing with cell 2RS, if separated from IRS, at least one and a half times as long as its apical breadth. 5 spp .

Nematinus Roliwer, p. 192
14 (13) Not more than 5 mm . long and either antennal grooves (round outer edge of antennal sockets) deeper than front edge of eyes (fig. 386) or (in certain species where this is less obvious) hind tibial spurs subequal and shorter than apical width of tibia, Malar space shorter than distance between antennal sockets (cf. fig. 550). Body often mainly black and stigma often darker at apex than base (fig. 375).
Over 5 mm . long, or antennal grooves shallow (not as deep as front edge of oyes); hind tibial spurs unequal in length or longer than apical width of tibia. Maler space often longer than distance between antennal sockets (cf. fig. 555). Stigma nover darker at apex than base 16
15 (14) Cells IRS and 2RS in fore wing fused together by the absence of oross-vein 2 rm (fig. 375).
(Black bodied species with at most face, temples, pronotum and more or less apex of abdomen pale; stigma usually piceous except only for oxtrome base. Antenna very short (in 9 shorter than C of fore wing; in ot not longer than C). Sawsheath much shorter than basal plate (cf. fig. 613); cerci very long, usually reaching back much further than apex of sawsheath (figs. 596-600). Claws bifid or with small inner tooth. Larva inhabits gall in stem, petiole, leaf-vein or buct of Salix and Populus)

Euura E. Newmans p. 194

- Cells IRS and 2RS in fore wing separated normally by a eross-vein 2 rm ($c f$. fig. 377).
(Occasionally small individuals occur in which all sign of this cross-vein is missing in both wings. These can then only be recognized by their having one or other of the following characters different : body more extensively yellow, stigma entirely pale, antenna longer, sawsheath not shorter than basal plate (figs. 617-21) or different in form (figs. 826-34), or cerci shorter (fig. 622). Claws bifid or sub-bifid. Larva in leaf-edge rolls or leaf-galls on Salix) . Pontania O. Costa, p. 197
16 (14) Hind claws with long inner tooth subparallel with end tooth and close to it (fig. 382) : in the of the distance between the tips of the two teeth less than length of inner tooth; in the σ^{7} the inner tooth at least longer than its basal breadth. .. Nematus Panzer, p. 211
Hind claws with a small erect inner tooth distant from end tooth (cf. fig. 381): in the \& the distance between the tips of the two teeth much more than length of inner tooth; in the of the inner tooth not longer than its basal breadth.

Pachynematus Konow, p. 231

Genus Hoplocampa Hartig.

A small genus with 34 described species in the world, and of these 11 occur in Europe and 9 in Britain. The adults are to be found mostly at the blossoms of their host-plants (Rosaceae of the subfamilies Pomoidea (Cratacgus, Malus, Pyrus and Sorbus) and Prunoidea (Prunus)) in the ovaries of which they oviposit. The larvae feed in the developing fruit, which generally fall off when the larva is mature, and they are often common enough in our
orchards to do serious damage to apples and ploms. They are thus all single brooded. In the keys below the species are arranged in such a way that those most closely related come next to each other, but in the opening couplet grass colour characters have been resorted to as being the quickest way to arrive at the species-groups.

The British species on Pomoidea could be segregated together by the combination of two characters-the clypeus being excised up to at least one-third of its greatest length and the mesopleura being glabrous below. In the group on Prunoidea H. flava is exceptional in having a deeply excised clypeus, but all the species have densely pubescent mesopleura.

Key to Spectes of Hoplocampa.

1 Abdomen black above except for apical segment. 2

- Abdomen mainly yellow above, though sometimes more or less black-marked at base
2 (1) Stigna of fore wing darker at base than apex, often over 5 mm . long. Eyes subparallel in front. Ovipositor of ρ as long as hind tibia; penis valve without a curved apical process ; on Pyrus and Malus.................... 3
- Stigma unicolorous pale brown. Under 5 mm . Eyes slightly converging in front below. Ovipositor clearly shorter than hind tibia; penis valve with a curved apical dorsal process like a tusk ; on Prunus 8 (2) Head with a large black patch covering vertex, ocelli and frontal area; mesonotum almost entirely piceous or black. Wings slightly infuscate with venation black to piceous. Penis valve fig. 392. 6.7 mm .

This species is the notorious pest of apple (Malus pumila Mill.). Locally abundant in England and S. Scolland. IV-V. C. Europe to the Caucasus. Introduced into W. Canada.................... σ and \odot testudinea (Klug.)

- Head almosti entirely light brown above; mesonotum with conspicuous light brown areas on medial and lateral lobes and on seutellum. Wings subhyaline with yellow venation. $5-5.5 \mathrm{~mm}$.

This species attaeks pear (Pyrus communis L.) and is a serious pest locally in C. Europe. In Britain it was first found in a garden in Cambridge in 1935 by Dr. I. Thomas (\dagger Miles, 1936, Ent. mon. Mag. 72:58) and in 1949 began to appear as a serious pest in the orchards in N. Kent. IV-V. C. Europe. ot not seen t and q brevis (Klug)
4 (1) Stigma of fore wing darker at base than apex. Fore wings either under stigma with fuscous, or else mesonotum, including scutellum, black. Abdomen orange-yellow. Mesopleura densely pubescent all over. Penis valve of δ without any setae at apex but in one species bears a long twisted process (figs. 393, 399 and 400).
Stigma of fore wing not darker at base than apex. Wings unicolorous without fuscous band and body mainly pale yellow with at least scutellum of mesonotum not entirely black, Mesopleura glabrous below. Penis valve of 3 with an apical tuft of fine hooked setae (figs. 394-6).
5 (4) Sunken parts of metanotum mainly pale in $\&$ and in σ^{*}; if black, then lateral mesonotal lobes immaculate, and if basal tergites marked with black medially then a lateral row of black spots also present on each side of third to sixth basal tergites. Abdomen yellowish-white. Hind tarsus equal in length to hind tibia. Ovipositor of of shorter than hind tibia. Attached to Sorbus. . 6 Sunken parts of ${ }^{t}$ and q metanotum black and usually with at least middle of two basal tergites black-marked; δ° with mesonotal lobes and basal abdominal tergites more or less marked with black medially, but tergites without a lateral row of black spots on each side. Abdomen yellow. Hind tarsus longer than tibia. Ovipositor of q about as long as hind tibia. $3 \cdot 5-5 \cdot 5 \mathrm{~mm}$. Very variable in colour; in ρ mesonotal lobes may be mainly black or entirely pale. Penis valve fig. 394.

Larva feeds in developing fruits of Crataegus. Locally abundant throughout Bretain and Ireland. $T-V I$. All Rurope
σ and $\%$ ($=$ plagiata Klug. Cameron nec. Klug) crataegi (Klug)

6 (5) Wings creamy-white. Sunken parts of metanotum mainly pale in δ and q; abdomen blackened at most in basal sutures. Penis valve, fig. 395. 3.6-5.5 mm.

Larva in developing fruits of Sorbus ancuparia L. Lacal throughout Britain and Ireland. $\overline{-}$-VI. C. and N. Eurape, Siberia to Japan
\Rightarrow and 9 alpina (Zetterstedt)

- Wings yellowish. Sunken parts of metanotum mainly pale in $\frac{9}{\square}$ but more or less black in δ, which also has basal abdominal tergites marked with black, often extensively, in the middle, and laterally a row of black spots on third to sixth basal tergites. Penis valve fig. 396. 4:5-6.5 mm,

Larva in developing fruits of Sorbus arias L. I etc. Known from Gloucester, Berks., Oxford, Bucks., Herts., and Surrey, and also from Yorks and Cheshire (\dagger Benson, 1933, Stylops 2 : 255-6). $\quad V-V I$.
C. Europe
\mathcal{B}^{2} and 9 ariae Benson

Figs. 392-9.--Penis valve in Hoplocampa spp: : 392, testudinea; 393, pectoralis; 394, crataegi; 395, alpina; 396, ariae; 397, rutilicornis; 398, chrysorfioea; 399, flava.

Fic, 400.-Apex of abdomen of Hoplocampa flava ${ }^{\mathbf{d}}$ from above.

7 (4) Wings uniformly subhyaline, costa, subcosta and base of stigma greyish-brown ; apex of stigma and rest of venation yellow. Mesonotum mainly black in 9 and in $\sigma^{\prime \prime}$ with at least postoccipital area black. Antenna mainly black in 9 and at least above on basal segments of of. Hind tarsus as long as hind tibia, as also is q ovipositor. Penis valve of δ without apical seta (fig. 393). $3-5 \mathrm{~mm}$.

Larva in developing fruits of Crataegus. Throughout Britain and Irelond. V-VI. O. and S. Burope............... σ^{*} and 9 peetoralis C. G. Thomson

- Wings with fuscous band under stigraa of fore wing; apical to this band winge are clear, basal to it yellow ; easta, subcosta and base of stigma yellow. Mesonotum, head and antenna brown in 9 ; in 0 mainly so but some piceous markings on vertex and mesonotum may occur. Hind tarsus shorter than tibia, as also is 9 ovipositor. Penis valve of σ with a long twisted epical process (figs. 399 and 400). $3 \cdot 5-5 \cdot 5 \mathrm{~mm}$.

Larvae in developing fruit of wild and cultivated plums and damsons (Prunus spinosa L. etc.). Common locally in England, where it is often a serious pest causing over 50 per cent. loss of frwit, and sometimes as much as 90 per cent. Has also occurred sparingly in S. Scotland and in Ireland. IV-V. All Europe and Asin Minor to Caucasus
$\delta^{\prime \prime}$ and $9(=$ ferruginea \mathbf{F}. and minuta auctt, angl, nec. Christ.) flava (L.)
8 (2) Abdomen with entiro underside yellow. Antenna mainly infuscate above. Legs yellow with apices of tibiae and tarsal segments infuscate; tarsus of hind legs about as long as tibia. Penis valve without apical process (fig. 398). 4-4.5 num.

Attached to witd sloe (Prunus spinosa L. etc.) rather than cultivated plums. Local throughout England to Dumfries; also from Ireland: Kerry and Cavan IV-V. Throughout Europe.................. $\begin{gathered}\text { ond } 9 \text { ehrysorrhoea (Klug) }\end{gathered}$

- Abdomen entirely black, except for apex beneath. Antenna and legs entirely yellow. Tarsus of hind leg clearly shorter than tibia. Penis valve with an apical process (fig. 397). $3 \cdot 5-4 \mathrm{~mm}$.

Attached also to wild sloe (Prunus spinosa L. etc.) rather than cublivated plums. Much rarer than the preceding species though it has much the same distribution and occurs as far north as Kirkeudbrightshire and in the same counties in Ireland. IV-V. Throughout Europe
σ and 9 rutilicornis (Klug)

Genus Hemichroa Stephens.

A small genus of about six known species, of which three are recorded from Europe and two from Britain. Superficially very like Nematinus (p. 192) and, as in the latter genus, the species use their strong saws to oviposit in leaf petioles. Attached to Betulaceae and Corylaceae. Mainly parthenogenetic species with rare males.

A \quad. Whole body mainly reddish-yellow with entirely black antenna (entirely reddish-yellow except for the following, which are black : antenna, mouthparts, sternal region of thorax and whole metathorax, basal tergite and sawsheath of abdomen, coxae, base of femora, apex of tibiae and tarsal segments). Wings subinfuscate; ©, stigma and apical venation brown; basal venation and $\mathrm{Sc}+\mathrm{R}$ piceous. $\quad \overline{0}-8 \mathrm{~mm}$.
o. Antenna, head and thorax entirely black or piceous except for partially yellow tegula, and more or loss reddish-brown legs. Abdomen mainly piceous, though some of the tergites and sternites are more or less yellow. Wings infuscate at base, subhyaline beyond stigma; stigma brown in the middle ; C and apical venetion yellow ; basal venation piceous. $\quad \mathrm{b}-6 \mathrm{~mm}$.

Larva feeds gregariously on Alnus and Betule, and in Ireland has also been found on Corylus avellana L. Probably throughout Britain and Ireland, and in some seasons exceptionally abundant locally. In the summer of 1932 a grove of alders near Berkhamsted, Herts., was completely defoliated by this species, which that year produced three broods. V-IX. Europe including Spain, Siberia to Kamtchatka and N. America.... ${ }^{t}$ and \circ crocea (Geoffroy) but underthorax, legs and abdomen entirely black. Wings subhyaline; C yellow ; stigma, $\mathrm{Se}+\mathrm{R}$ and rest of venation piceous. $5-8 \mathrm{~mm}$.
δ. Differs from crocea ot in that the antenna is at least red below and the stigma of the wing is piceous. $5-6 \mathrm{~mm}$.

Larva on, Alnus and Betula and usually solitary. Throughout Britain but not recorded from Ireland. V-VI. and VII-VIII. N. and O. Europe. Siberia to Japan. and and $\quad(=a l n i$ L. 1767 nec 1758) australis (Lepeletier)

Figs. 401-6.-Sawsheath of Nematinae from above in ; 401, Pseudodineura fuscula; 402, P. enslini ; 403, Mesoneura opaca; 404, Dineara virididorsata; 405, Anoplonyx destructor; 406, Hemichroa crocea.

> Genus Anoplonyx Marlatt.
> $(=$ Platycampus Schiödt. in part, Camponiscus Nowman in part and Leptocercus Konow in part.)

A small genus of eight known species, all attached to Larix. Four of these occur in Europe but only one has so far been introduced into Britain. Superficially very similar to Pristiphora (cf. P. laricis Hartig) with its expanded apex to vein C of the fore wing, but it is at once separated by the presence of the basal loop of the anal cell (cf. figs. 371 and 376).

The only British species is $5-6.5 \mathrm{~mm}$, and blenk, except for the more or less brown mouthparts and labrum, and the white hind margin of the pronotum, tegula, trochanters, apices of fernora, tibiae and tarsi. Wings clear hyaline with almost white $\mathrm{C}, \mathrm{sc}+\mathrm{R}$ and stigma, and with other venation pale brown. Sawsheath from above about as broad as apex of hind tibia and slightly trifid at apex (fig. 405). of so far unknown.

Larva on Larix decidua Mill and loptolepis (Sieb. and Zucc.) Gorde and locally abundant throughout Britain, sometimes causing serious damage in plantations. The British species is so far known elsewhere only in Finland. (Benson, 1952, Bull, ent. Res. $43: 543-7$)
*? ($=$ duplex Lepeletier auctt. angl, neo Lep.) destructor Benson

Genus Platycampus Schiödte.

(=Camponiscus Newman in part, Leptocercus Konow in part).
A small genus with six or seven described species, of which two or three are known in Europe and one in Britain. The flattened and extremely modified larvae feed on the underside of leaves of Betulaceae (Alnus and Betula).

The only British species is black with reddish yellow legs sometimes infuscate on the apices of the tibiae and tarsi; the following are also brown: in the of the tegula, the underside of the anterna and hypopygium; in the P the edge of the pronotum, more or less the underside of the abdomen and sometimes a fleck on the mesopleura. Wings subhyaline with stigma and venation piceous. Sawsheath rounded behind and not projecting as far back as the long cerej (much as in Hemichroa, fig. 406). Inner hind tibial spur more than half the length of the basitarsus. $5-6 \mathrm{~mm}$.

Larva on Alnus. Locally common throughout Britain and Ireland. V-VI. N. and C. Europe........................ ${ }^{\text {and }} q$ luridiventris (Fallén)

Genus Dineura Dahlbom.

A small genus with only two or three known species, all of which occur in Britain. The larvae are flattened against the leaves of their foodplant and, when feeding, leave intact the lower cuticle of the leaves. The adults are remarkable for the great variation of their wing venation, which is sometimes scarcely distinguishable from that of Nematus; when this is so the genera must be separated by the form of the mandibles (cf. figs. 379 and 380).

Key to Spectes of Dineura.

1 Head all black except, at most, for the mouthparts. Eyes larger so that the malar space is about equal to the distance between the antennal sockets. Antenna ofter dark, at least above. Thorax black except, at most, for the pronotum (more or less), margins of mesonotal lobes, tegula and mesepisternum. Abdomen black, or yellow with black spreading more or less from the basic tergite each side of the abdomen above towards the apex, leaving till last a pale medial line. Wings slightly brownish; stigma about twice as long as broad and slightly infuscate round the margin; C and rest of venation pale brown, $4-5-5 \mathrm{~mm}$. 2

- Head with at least the inner orbits pale. Eyes smaller so that the malar space is longer than the distance between the antennal sockets. Antenna pale above, even in the darkest forms. Thorax of q mainly orange, though black spots may develop on the mesonotal lobes and in extreme forms fuse with the black aunken parts of the mesonotum to form an almost entirely black upper surface to the thorax as in the 0 . Abdomen yellow, or may be more or less black, spreading from the basal tergite towards the apex, medially at first, leaving the sides pale. Wings yellowish hyaline; stigma about two and a half times longer than broad and pale yellow, as is the rest of the venation. $5-8 \mathrm{~mm}$.

Laraw on Betula. Common throughout Britain and Ireland, though the Irish and Scottish forms are often darther than the English and may be almost ertirely black above. V-VI, C, and N. Europe, and Siberia to Kamtchatka
σ^{3} and 9 virididorsata (Retzius)
2 (1) Abdomen with more or less of the apical segments pale above, at least medially.
Larva on Crataegus. Throughout Britain and Ireland but commonest in the South. V-VI. C. and N. Europe and Italy. σ^{2} and 9 stilata (Klug)

- Abdomen entirely black above except at most for the apical segment.

Larva on Sorbus ancuparia L. Ireland and throughout Britain but commoner inc the north and west, V-VI. N, and C. Europe, Siberia to Kamtchatka.. $\begin{gathered}\text { and } \\ \text { 우 } \\ \text { testaceipes (Klug) }\end{gathered}$

Genus Mesoneura Hartig.

A small genus of three or four species, only one of which occurs in West Europe and Britain. This species is apparently entirely parthenogenetio and the male is unknown.

O Head black except for the yellow labrum, mandibles, and (more or less) clypeus. Thorax very variable in colour : in the darkest forms entirely black except for yellow
tegula and pronotum ; in the commonest form middle lobe of the mesonotum, scutellum and most of mosopleura arange; in the palest form side lobes of mesonotum also orange. Legs dark yollow with at least apex of hind tibia and tarsi infuscate, but coxae and bases of femora may be more or less infuscate. Wings hyaline; C and stigma yellow, though stigma may be more or less brown, as is the rest of the venation. Abdomen mainly black, but may be more or less yellow beneath. Sawsheath broad and apically emarginate in dorsal view (fig. 403). 6-7 mm.

The great range of colour pattern, even among $9 \$$ collected from the same tree on the same day, is interesting in a parthenogenetic species, Larva on Quercus. Common throughout Britain and Ireland. IV-VL. N. and C. Europe

* $\ddagger(=$ verna, biloba Stephens and selandriaformis Cameron) opaca (Klug)

Genus Pseudodineura Konow.

(= Pelnuatopus Hartig nec Fischer de Waldheim).
A small genus of nine known species, of which eight are European and two British. The larvae all live in blister mines in the leaves of Ranunculaceae. They bave a single annual brood and fly in early spring. The adults are much more difficult to find than the mines.

A Antennal segments 7,8 and 9 equal to segments 3 and $4 ;$ segment 8 lass than than three times longer than broad. Malar space very short (only about as long as one and a half facets of compound oye). Sawsheath of q with an apical and ventral keel so that in dorsal view it is apically produced (fig. 401). 3-4 mm.

Lava lives $V-I X$ singly in a bister mine in the leaves of variaus terrestrial species of Ranunculus with divided leaves, such as R. repens L. R. acer L., and even R. auricomus L. Probably widespread in Britain. Has been found in England: Devon, Dorset, Herts., Cambs., N. Lincs. and Warwichs. ; and in Scotland: Lanark, Dumfries, Moray, and Caithness. IV VI. G. and N. Europe, and Siberia....0 and \cap ($=$ despectus Hartig) fuscula (Klug)

в Antennal segments 7,8 and 9 greater than segments 3 and 4; segment 8 more than three times longer than broad. Malar space about as long as two compound eye facets. Sawsheath of $\%$ with an apical and ventral groove so that, from above, it appears apically emarginate (fig. 402), 34 nm .

Larva mines the leaves and petioles of Trollius europaeus L. So far only found in Scotland: near Grantown-on-Spey in Moray, and near Bettyhill in Sutherland (Benson, 1934, Ent. mon. Mag. $70: 202$). V-VI. C. and N. Europe..................................... $\begin{gathered}\text { and } q \text { enslini (Hering) }\end{gathered}$

Genus Stauronematus Benson.

> (=Stauronema Benson nec Solas).

A monotypic genus closely related to Pristiphora, with which it was formerly included.

Black, with edge of pronotum, tegula and legs yellow (except for black apices of hind tibia and tarsus). Wings hyaline with piceous stigma and pale brown venation including C and $\mathrm{Sc}+\mathrm{R}$. Ovipositor as long as two basal tarsal segments; sawaheath reaches back about as far as tips of cerci, about as broad as apex of basitarsus, rounded in form but drawn into an acute apex and bearing long curved setae on its sidos. Saw fig. 407 ; penis valve fig. 408. $5-6.5 \mathrm{~mm}$.

Larva usually on Populus but sometimes on Salix; surrounds itself with a palisade of dried saliva. Engtand, mainly S. of Bristol-Humber line, but also Wales, Glamorgan. V-VI and VII-IX. Holarctic
σ and $\%$ compressicornls (Fabricius)

Fig. 407.-SSaw of Stauronemaius compressicornis.
Fre. 408.-Penis valve of S. compressicornis.
Frgs. 409-11.-Costal region of fore wing in Pristiphora spp. : 409, monogyniae; 410, abbreviata; 411, laricis.

Genus Pristiphora Latreille.
($=$ Lygaeonematus Konow and Micronematus Konow).
By fusing Lygaeonematus and Micronematus with Pristiphora a genus of some 120 described world species (40 British) is segregated, very diverse in form and habit, and rich in undescribed species.

Key to Groups A-G of Spectes-Groups.

1 Mesopleura dull with rough or coriaceous surface sculpture. Abdomen black above except at most for yellowish apieal segments, and if under 5 mm . long then with mainly black hind femur. (mollis, alpestris, lativentris and staudingeri groups).. C Groups

- Mesopleura shining without rough surface, or, if this is slightly developed or the mesopleura is punctate then either (a) it is under 5 mm ., with pals hind fernur or (b) the abdomen has a reddish girdle covering the middle segments or (c) it has bifid tarsal claws.
2 (1) Species over 8 mm . long with a red-girdled abdomen. In of with laterally compressed sewsheath which, in dorsal view, is narrower then the apex of the hind femur ; cerci acuminate apically but broad and flattened at the base which is broader than the apex of the sawsheath in dorsal view. Attwhed to Larix. (erichsonit group)............................ D Group
- Species with abdomen not red-girdled, or else less than 7 mm . long. Sawsheaths of various forms, often broader than the apex of the hind femur and always broader than the base of the cerci
3 (2) Sawsheath of q subtruncate at apex in lateral view (figs. 480-3) and abdomen often laterally compressed towards apex; \hat{z} with pale mesosternum. Attached to Coniferae. (abietina group)

E Group

- Sawsheath of 9 rounded or acute in lateral view and abdomen not laterally compressed towards apex; \bar{z} with dark mesosternum or total length less than 4 mm . ; antenna short (q less than C of fore wing; d less than C + stigma). Mainly black-bodied species with stigma in part piceous. Attached to Rosaceae (Malus and Prunus). (monogyniae and retusa groups)

A Groups

- Either Se of fore wing at least half its own longth away from origin of M from R (cf. figs. 409,411), and tatal length over 4 mm , or antenna longer (9 more than C; ot more than $\mathrm{C}+\operatorname{stigma}$)
.5
5 (4) Not more than 4.5 mm . long and mainly black with hind fermur at least infuscate bacally. Antenna not longer than C of fore wing. Ovipositor longer than hind femur plus its second trochanter, and sawsheath protruding (figs. 478 and 479). Attached to Picea. (ambigua group). F Group
Either over 4.5 mm . long, or antenna clearly longer than C of fore wing. Often eoloured otherwise. Ovipositor shorter than hind femur plus its second trochanter and less protruding. Attached to various plants. (hestacea,

Kiry to Species of A Groups (monogynide Ano retusa),
1 Abdomen entirely black; atigma and C of fore wing piceous; trochanters piceous \qquad
Abdomen marked with yellow laterally or beneath; stigma and/or C of fore wing more or less pale; trochanters pale. (Sc of fore wing almost interstitial with origin of M on P (cf. fig. 410))
2 (1) Smaller specios $3-3.5 \mathrm{~mm}$. Pronotum all black and rest of insect black except for labrum, more or less the clypeus, tegula, more or less fore and middle femora, and more or less tibiae and tarsi of ail legs. Wings with stigrna and venation piccous; Sc of fore wing received on R far from origin of M (fig. 409). Sawsheath fig. 412 ; penis valve fig. 445.

Lefva on Prunus epinosa L. Widespread in Empland and Ireland. IV-V. (\dagger Morice, 1906, Ent. mon. Mags. $42: 31$). N. and C. Furope, Caweasus and Transcaucasia. . . . $\overline{\text { B }}$ and 9 ($=$ hbernious Cameron) monogyniae (Hartig)
Larger species ($4-5 \mathrm{~mm}$.). Pronotum with its hind angles yellow, otherwise coloured as the former. Sc of fore wing almost interstitial with origin of M on R (fig. 410). (Parthenogenetie species with of unknown).

Larva on Pyrus communis L. Known only from Devon, Surrey, Herts. and Beds. V. (\dagger Perkines, 1920, Trans Devon. Ass. Adv. Sci. B1: 306). C. and S. Europe and California

Y (三 califormica Marlatt, syn. nov.) abbreviata (Hartig)
3 (1) Smaller species ($3-4 \mathrm{~mm}$.). Stigma piceous at edges and white in the middle; in 9 white also at base, Sawsheath of 9 less than three times the breadth of a cercus in dorsal view and about half apical breadth of hind tibia (fig. 413). Colour mainly black: yellow are: mouthparts, edge of pronotum, tegula and apical abdominsl segments 3-4 laterally. Legs pale except for black bases of coxae, underside of femur, and, on the hind legs, the brown apex of tibia and tarsus.

Superficially like one of the gall-making Pantania species. Larva on Prunus padi.L. Only known as British from a few 99 and a larva taken near Aviemore, Inverness-shire, in, VI, 1934 and 1952 (\dagger Renson, 1941, Ent. mon. Mag. 77: 17). N. Europe.........................iq retusa (C. G. Thomson)
Larger species ($5 \cdot 5-7 \mathrm{~mm}$.), Stigma piceous brown in the middle. Sawsheath of 9 several times broader than a cercus and slightly broader than apex of hind tibia. Colour as in preceding species but more extensively pale on pronotum and on the apex of abdomen laterally and beneath. Penis valve fig. 416.

Larva gregariono on apple (Malus pumila Mill.). Local and sporadic in S. England: Kent, Surrey, Berks., Herts., Essex. (\dagger Theobald 1913, Entomologist $46: 108-9)$. IV-V and? VIII. C. and N. Wurope to E. Siberia
© and 9 moesta (Zaddach)

Key to Specles of B Groups (pallipes, ruficomis, testacea etc.).
P. alpestris, which belongs among the C Groups, is also ineluded here for technical convenience. P. geniculata is likewise included, thotugh it is probobly more closely related to P. moesta in A Groups than to any species here.

Fermales.

1 Abdomen with more than ninth tergite pale above; or hind femur not pale at the base with a black mark at the apex, or under 6 mm . long............. . . 2

- Large species (over 6 mm . long) with abdomen black above (except sometimes for ninth tergite) and hind femur pale at the base but black at the apex. $6.5-7.5 \mathrm{~mm}$.

Figs, 412-7.-Sawsheath of Pristiphora spp. Groups A and B from above: 412, monogyniae; 413, retusa; 414, biscalis; 415, paedida; 416, punctifrons; 417, alpestris.
Figs. 418-9.-Head of Pristiphora spp. from above to show position of ocelli in : 418, fulvipes; 419, alnivora.
Fies 420-1.-Hind tibial spurs in Pristiphora: 420, thalictrí fuscata; 421, alnivora.

Whole thorax and underside of abdomen mainly black; frontal area depressed in the middle with clearly defined raised margins.

Larvae in colonies on Sorbus aucuparia L. Not common in Brätish Isles; first found in New Forest by Miss E.F. Chawner $\dagger \dagger$ Morice, 1922, Ent. mon. Mag. 58 : 199) and, more Tecently, at Tring, Herts., 1941 (R. B. B.) and at Heath and Reach, Deds., 1949 (V. H. Chambers) ; in Ireland: Do, Wicklow (A. W. Stelfox). V-VI and VII-VIII. N. and C. Europe to Italy, to E. Siberia and N. America, locally as a pest of forest and ornamental trees

2 (1) Abdomen black above and beneath with at most only the ninth tergite more or less pale.
Abdomen with at least some of the sternites wholly or considerably pale... 12
3 (2) Hind legs reddish-yellow, more or less infuscate at apex of tibia and tarsus but never on femur. Either mesopleura dull, or wings more or less infuscate with C piceous.

- \quad Hind legs yellowish-white and may be more or less infuscate or black on femur, tarsus and apex of tibia. Mesopleura shining. Wings hyaline with brownish-white C
4 (3) Hind ocellus at least about twice its own diameter from hind margin of head (fig. 419). Wings more or less infuscate with piceous stigma and C in fore wing. Mesopleura smooth and shining. Sawsheath in dorsal aspect about as broad as apex of hind tibia.
Hind ocellus only about its own diameter distant from hind margin of head (tig. 418). Wings subhyaline with brownish-white stigma and C. Sawsheath in dorsal aspect broader than apical width of tibia. $4-5 \mathrm{~mm}$.

Head with temples and postocellar region dull with dense tubercles. Inner spur to hind tibia longer than apical breadth of tibia and about half length of basitarsus.

Larva on Salix. Widespread throughout Britain from Cornvall to Caithness and in Ireland. Parthenogenetic species of which the ${ }^{t}$ has not yet been found in Britain. V-VI and VII-VIII. Throughout Europe to Spain, to Asia Minor, to Caucasus and Transcaucasia, and E. to Siberia
q fulvipes (Fallén)
5 (4) Head above on the temples and postocellar region smooth and shining with tubercles obsolete. Inner hind tibial spur only as long as apical breadth of tibia (fig. 420). Hind tarsus unicolorous with tibia and reddish-yellow. $4.5-5.5 \mathrm{~mm}$.

Larva on Thalictrum flavum L. Discovered at Askham Bog, Forks., by W. D. Hincks in 1942 (\dagger Benson, 1943, Ent, mon. Mag. 79: 180) and since found in England: Bucks,, Beds., Hunts, and Noffoll, and Ireland: Co. Cavan. V-VI and VII-VIII. Gottand, Finland, N. Germany and replaced by dark-legged forms of P. thalictri Kriechbaumer in other parts of Eurasia to Japan...... ? (fumipermis Thomson nee Stephens) thalictri fuscata Benson

- Head covered with tubercles on temples and postocellar area (fig. 419). Inner hind tibial spur much longer than apical breadth of tibia and about half as long as basitarsus (fig, 421). Hind tibia reddish-yellow but tarsus infuscate at apices of segments. $4.5-5.5 \mathrm{~mm}$.

Larja on Aquilegia vulgaris L. ete, and a troublesome garden pest in C. Europe. In Britain discovered first in gardens in 1946 in Middlesex (C. H. Andrewes) and Devon (R. C. L. Pertins), and in 1949 at Wye, Kent (H. W. Miles). (\dagger Benson and Andrewes, 1947, Ent. mon Mag. $83: 223$), $I V-I X$ (with many broods). C. Europe to E. Siberia. . . . $\%$ alnivora (Hartig)
6 (3) Hind femur mainly black (i.c. entirely black except for extreme base and apex). Claws with an imner tooth present. Sawsheath as broad or broader apically than apex of hind tibia. Se of fore wing at least half its own length from origin of M from R (cf. figs. 409 and 411). Antenna piceous, or more or less flavous ${ }^{1}$.
Hind femur yellowish-white, though more or less piceous; if mainly piceous then either the claws are simple, without any inner tooth, or the sawsheath in dorsal aspect is narrower apically than the apex of the hind tibia and Se of the fore wing is less than half its own length from origin of \mathbf{M} from \mathbf{R} (cf. fig. 410), Antenna piceous.
7 (6) Claws with small inner tooth. 7 a

[^1]7a (7) Saw without bands of setae on the lateral margins of the 6 apical segments (figs. 422-3). Antenna piceous or more or less flavous. \qquad

- Saw with bands of setae on the lateral margins of at least the fifth and following segments (figs. 424-6). Antenna more or less flavous.
8 (7a) Antenna piceous. Saw narrow with sixth marginal tooth about three times as long as high (fig. 422). 4-5.0 mm.

Larva on Betula, England: Devon, Surrey, Bucks., Herts.; Scotland : Dumbarton, Aberdeen. IV-VI. Throughout Burope
q melanocarpa (Hartig)

- Antenna more or less flavous beneath. Saw wider, with sixth marginal tooth about twice as long as high (fig. 423). $4-5.5 \mathrm{~mm}$.

Larva unknown. Englond: Devon, Surrey, Bucks., Herts.; Scotland: Perths, Invemess. V-VII, Throughout Europe

은(fraxini Hartig) ruficornis (Olivier)
9 (7a) Head with clearly defined raised frontal area. Saw with long bands of setae from lateral margin of fourth or fifth and following segments (fig. 425-6) . . 10

- Head vory rounded above so that frontal area is scarcely defined. Saw with setae on lateral segmental margins in short bands from about fifth to fifteenth segment (fig. 424). $4-5.5 \mathrm{~mm}$.

Lavza on Salix spp. related to caprea L. New Sritish Record. Hants.: Lyndhurst, 1 o reared by Miss E. F. Chawner (B.M. 1929); Kent: Wye, 1 9, vĭi. 1946 (R. B. B.); Bucks.: Ivinghoe Common, 1 d. v. 1935 R. B. B.); Herts. : Boxmoor, 1 9, v.1933; Perthes: Rannoch, 1 天, oh. 1031 (R. B. B.), Sweden, Finland, Russia, Germany................. 9 coniceps Lindqvist
10 (9) Frontal area narrower (only about as broad as distance between hind ocelli). Saw with middle marginal teeth about twice as long as high (fig. 425).

Lavva on Crataegus. England: Dewon, Glamorgan, Warcester, Hants., Berks., Bucks, Herts., Middlesex, Essex, Suffolk, Cambridge; Scotland: Lanarli. IV-VII. France, Germany, Sweder, Finland
of (fletheri Cameron) erassicornis (Hartig)

- Frontal area broader than distance between hind ocelli. Saw with midde maxginal teeth about three times as long as high (fig. 426).

Larva on Salix fragilis L., phylicifolia L. elc. New British Record. Bucks.: Weston-Turville, 1 q reared w. 1924 (R. B. B.) ; Berks.: Windsar Forest, 1 f: $\mathbf{q} .1935$ (H. St. J. Donisthorpe). Sweden, Finland, Russia, Germang and Switzerland.............................. 9 confusa Lindqvist
11 (6) Sc of fore wing at least its own length away from origin of M from \mathbf{R} ($f f$. fig, 409). Claws without any inner tooth. Sawsheath in dorsal view broader apically than apex of hind tibia, and trifid, with middle tooth shorter than lateral tooth. Saw without backwardly projecting spines from lateral margins of segments (fig. 427). $4 \cdot 5-5 \cdot 5 \mathrm{~mm}$.

Mainly parthenogenetic with very rare δ. Notorious in the larval stage as a pest of red currants (Ribes rubrum L.) and goosebories (Ribes uwawcrispa L.). Common throughout Britain and Ireland. IV-X (several broods). Distributed throughout the temperate regions of the northern hemisphere.

ㅇ (= appendiculata Hartig) pallipes Lepeletier

- Sc of fore wing less than its own length away from origin of M from R (fig. 411). Claws with minute inner tooth. Sawsheath in dorsal aspact narrower at apex than apex of hind tibia and trifid with middle tooth as long as lateral teeth, but the whole often so withdrawn within the apex of the abdomen as to be scarcely visible. Saw with backwardly projecting spines from lateral margins of segments (fig, 428). $4-6.5 \mathrm{~mm}$.

Larva ofter destructive to Larix decidua Mill. and leptolepis (Sieb. and Zucc.) Gord. Throughoui Britain and Ireland. (Horice, 1906, Ent. mon. Mag. 72 : 250), IV-VI and VII-VIII. N. and C. Europe
$q(=$ oblongus Cameron) laricis (Hartig)
12 (2) Hind femur more or less pale but with a piceous spot at the apex............ 17
Hind femur entirely pale, yellowish-white to reddish-yellow, or more or less infuscate from the base, but with apex unmarked. 13
13 (12) Sc of fore wing at least half its own length away from origin of M from R (cf. fig. 411). Hind femur pale. 14
Sc of fore wing less than half its own length away from origin of M from R ($\mathrm{c} f . \mathrm{fig} .410$). Hind femur more or less infuscate from the base.

Figs. 422-8.-Saw of Pristiphora spp. Group B: 422, melanocarpa; 423, ruficornis; 424, coniceps ; 425, crassicornis ; 426, confusa; 427, pallipes; 428, larieis.

Stigma piceous. Sawsheath (fig. 414) narrower in dorsal aspect than apex of hind tibia and scarcely emarginate, almost truncate at apex $4 * 5$ 5.5 mma .

Larea solitary on Prunus spinosa L. S. England: Devon, Dorser, Glos., Surrey, Bucks., Herts. and Beds.; also Wales: Glamorgan; and Ireland: Wicklow. (\dagger Perlinns, 1929, Trans. Devon. Ass. Adv. Sei. 61:305). IV-VI. C. Europe. biscalis (Förster)

14 (13) Abdomen entirely or mainly dark above.
15

Abdomen entirely or mainly yellow above. 19
15 (14) Sawsheath as broad as apex of hind tibia in dorsal aspect and projecting but little beyond apex of abdomen: in form with either the apex strongly excised or subtruncate but not narrowed behind. 16

- Suwsheath (fig. 415) narrower than apex of hind tibia and oxserted, broad and rounded at the base, tapering behind, where it is slightly emarginate through the apical projection of the lateral angles. $4.5-5.5 \mathrm{~mm}$,
? Parthenogenetic species with rare 万. Larva unknown. Not common, England to Perths. in Scotland. (\dagger Morice, 1906, Ent. mon. Mag. 42 : 250). V-VI. C. Europe. p paedida (Konow)
16 (15) Smaller ($4-5 \mathrm{~mm}$.) with sawsheath in dorsal aspect deeply emarginate behind (Gg .416).

Larva on Rasa. Widespread throughout Britain. (†Morice, 1906, Ent. mon. Mag. $42: 249)$. IV-VI. C. and N. Europe with Iberian Peninsula ard eastwards to E. Siberia

9 (= viridana Konow) punetifrons (C. G. Thomson)

- Larger ($5-6 \mathrm{~mm}$.) with sawsheath in dorsal aspect almost truncate at apex, with but a slight emargination each side of the middle (fig. 417) (cf. couplet 1 in key to C Groupa)
. F alpestris (Konow) $^{\text {a }}$
17 (12) Abdomen black at base and apex with a red girdle covering two to four of middle segments. Pronotum black with only hind margin pale. Inner hind tibial spur only about half as long as basitarsus.

Sawsheath about as broan behind as apex of hind tibia and emarginate each side of the middle (cf. fig. 416). Saw (fig. 431). $5.5-6.5 \mathrm{~mm}$,

There appear to be 2 races (? species), a smaller one attached to Vaccinium myrtillus L. and a Larger one attached to Betala. Throughout Britain and Ireland, but much commones (Vaccinium race) in the W and N., reaching even the summits of the highest Scottish Mountains. IV-VI. C. and N. Europe to E. Siberia and N. America . . $\mathrm{P}(=$ = idiota Norton. Syn, novo) quercus (Hartig)

- Abdomen differently coloured. Pronotum mainly pale. Hind tibial inner spur more than half as long as basitarsus . 18
18 (17) Abdomen yellow except for the one or two basal tergites, which are marked with black. $\quad 5-6 \mathrm{~mm}$.

Structurally not distinguished from the following species. Saw, fig, 430.
Larva not described. Widespread in England and also occurs in Ireiand. V-VI ard VII-X. (\dagger Benson, 1940, Trans. Herts. nat. Hist. Soc. $21: 229$). Europe, mostly restricted to countries with an athantic seaboard, reaching the Azores and Madeira.
of denudata Konow

- Abdomen very variable in colour with underside yellowish or greenish-white and above with every tergite at least marked with black. $4.5-5.5 \mathrm{~mm}$.

Structurally not distinguished from the foregoing species with which it forms a Continental Atlantie pair. Superficially very similar to Pachynematus obductus Hartig from which it is distinguished by its broad sawsheath apically emarginate in dorsal aspoct.

Larva on various Rosaceae (Geum, Potentilla, Rubus and Ulmaria). Throughout Britain and Ireland even to the summit of the highest Scotlish mountabs. IV-FI and VI-IX. N. and C. Europe to Caucasus

* $?(=$ obauctus Hartig Cameron nec Hartig) pallidiventris (Fallén)

19 (14) Orbits mostly black. Sawshoath yellow to piceous, wider from above than apex of hind tibia; strongly emarginate at apex. 20
Inner and outer orbits conspicuously pale. Sawsheath black and in dorsal aspect subtruncate at apex, which is not as wide as apex of hind tibia. 5-7 mm.

Mesopleura pale. Saw, fig. 429.
Larva on Acer campestre L. and A. pseudoplatanus L. England (searce) : Devon, Dorset, Wilts., Surrey, Middlesex, Bucks., Herts. and Worcester. V. N. and C. Europe * q subbilida (C. G. Thomson)

Figs. 429-30̃.-Saw of Pristiphora spp. Groups B and C: 429, subbifuda; 430, denudata; 431, quercus; 432, testacea; 433, conjugala; 434, alpestris; 435, breadalbanensis.

20 (19) Mesopleura pale. Stigma with pale spot near apex. Sawsheath piceous at apex. $5-7 \mathrm{~mm}$. Saw, fig. 433.

Larva socially on Populus. England: Cornwall, Devon, Hants., Herts,, Beds. and Lancs. IV-VI and VII-TIII. N. and C. Europe to Italy.
\& conjugata (Dahlbom)

- Underthorax entirely black. Stigma entirely black. Sawsheath entirely yellow. $5-7 \mathrm{~mm}$. Saw, fig. 432.

Larva socially on Betula. England: Devon, Hants., Surrey, Kent, Herts. Ireland: Cos. Cavan and Wicklow. V-VI and VII-VIII. N. and C. Europe........................... ? (= betulae Retzius) testacea (Jurine)

Key to Spectes of B Groups.

Males

1 Abdomen including last sternite all black

- Abdomen with at least last sternite more or less pale. 11

2 (1) Hind femur black at least on apical portion, and antenna also black. Frontal area somewhat depressed in the middle and with the margins distinct. Inner orbits above antenna not densely and evenly punctured throughout.

- Either hind femur not black on apical portion ; or antenna distinctly pale beneath ; or frontal area not defined and inner orbits above antenna densely and somewhat coarsely punctured throughout. Usually under $5 \mathrm{~mm}3$
3 (2) Hind femur and tibia mainly reddish-yellow
Hind femur mainly black and tibia mainly brownish-white
4 (3) Wings infuscate. Whole of tibia and tarsus yellow. Penis valve, fig. 449
ot thalictri fuscata Benson
Wings subhyaline. Apex of hind tibia and tarsus marked with black......5
5 (4) C and stigma of fore wing piceous. Penis valve, fig. 450.. 6 alnivora (Hartig) C and stigme of fore wing yellowish-white (no British of this species known)
ô fulvipes (Fallén)
6 (3) Claws with an inner tooth present, even if very small
- Claws simple, without any inner tooth

Penis valve fig. 447. Very rare of of normally parthenogenetio species. 4-5 mm... ${ }^{*}$ pallipes Lepeletier
7 (6) Claws with small inner tooth $.7 a$

- Claws bifd. (Penis valve, see Lindqvist 1955, l.c. fig. 24).... © bilida Hellén

7a. (7) So received on R in fore wing more than half its own length from origin of M (fig. 409). Flagellar segments of antenna furnished, especially on their inner sides, with numerous conspiouous stout black setae among the finer paler onos (fig. 436)
.7b

- \quad So received on R less than helf its own length from origin of M (fig. 411). Flagellar segmeuts of antenna without any stout black setae set among the paler ones (fig. 437). Penis valve fig. 448.
. ${ }^{A}$ laricis (Hartig)
7b (7a) Eighth tergite not medislly produced (fig. 438)
.8
- Eighth tergite with a long medial projection (fig. 439). Penis valve fig. 444 σ^{3} erassicornis (Hartig)
8 (7b) Penis valve with curved spine sharply bent and tapering from base to apex (figs. $440-2$)
- Penis valve with thick spine scarcely bent or tapering (fig. 443)
δ confusa Lindqvist
9 (8) Penis valve with spine very fine and sharp but with a swollen base (fig. 440) 0 coniceps Lindquist
- Penis valve with curved spine tapering evenly from bsise to apex (figs. 441-2)

10 (9) Penis valve (fig. 441)................................ ${ }^{\text {(}}$) melanocarpa (Hartig) Penis valve (fig. 442)...................................... or ruficornis (Olivier) $^{\text {r }}$.
II (I) Penis valve (fy.
(1) Hind femur pale at base but at least with a dark spot above at apex. Hind tibia black at apex. Stigma of fore wing usually piceous and contrasting strongly with the pale C... . . 12

- Hind femur entirely pale, more or less infuscate from base to entirely dark, but never pale with a dark apex. Hind tibia may be pale at apex. Stigma yellow or brown, but not or scarcely darker than C. 13
12 (11) Abdomen mainly bleck above but usually with a red girdle round middle segments (in northern specimens girdle may bo broken or even entirely absent). Inner hind tibial spur usuelly more than half length of basitarsus. Hypopygium emarginate apically. Penis valve fig. 451.. . © quercus Hartig
- Abdomen almost ontirely yellow except for basal tergite. Inner hind tibial spur less than half basitarsus Hypopygium entire. ${ }^{\text {a }}$ denudata Konow
13 (11) Underside of abdomen (stemites and down-turned portions of tergites) not wholly pale

14

- Underside of abdomen wholly pale 17

Figs. 436-7.-Basal segments of antema in of Pristiphora Group B : 436, melionocarpa; 437, laricis.
Figs. 438-9.-Eighth tergite of ot Pristiphora: 438, ruftcornis; 439, crassicornis,
Figs, 440-4.-Penia valve in Pristiphora spp.: 440, coniceps; 441, melanocarpa. 442, ruficornis; 443, confusa; 444, crassicornis.

14 (13) Antenna not as long as $\mathrm{C}+$ stigma of fore wing. Eighth tergite with raised medial triangle between grooves not clearly defined and apparently transecting the whole segment.

- Antenna longer than $\mathrm{C}+$ stigma of fore wing. Eighth tergite with sharply defined raised apical medial triangle between deep excavations not reaching base of segment .16

Fras. 445-56.-Penis valve in Pristiphora spp. Groups A and B: 445, mongyniae; 446, moesta; 447, pallipes; 448, laricis ; 449, thalictri fuscata; 450, alnivora; 451, quercus; 452, paedida; 453, punctifrons; 454, biscalis; 455, conjugata; 456, testacea.

15 (14) Larger (5-6 mm.). Stigma and C of fore wing yellow; rest of venation piceous. Head above with a raised frontal area usually depressed in middle with a more or less carinate margin and covered with irregular coanse tubercles. Penis valve fig, 469 (cf. couplet 1 in key to C Groups).. δ alpestris (Konow)

- Smaller (4-4.5 mm.). Stigrna of fore wing piceous, C likewise but paler, as is rest of venation. Head above with a raised but undefined frontal area, with the surface shining between dense regular tubercles. Penis valve fig. 452.

Only known British of taken at Beds. : Maulden Woods, w. 55 (V: H. Chambers).. 6 paedida (Konow)
16 (14) Sc of fore wing at least half its own length away from origin of M from R (cf. fig. 409). Mesonotum dull all over with fine tubercles and coriaceous sculpture. Upper surface of head without clearly deinned frontal area and whole head dull with dense tubercles. Penis valve fig. 453. 4-4.5 mm.
σ^{*} punctifrons (Thomson)
Sc of fore wing less than half its own length away from origin of M from R (of. fig. 410). Mesonotum shining between the fine surface sculpture, which is almost obsolete on side lobes and middle of front lobe. Head with a dofined frontal area shining in places between the fine scattered tubercles. Penis

17 (13) Mesopleura yellow. Stigma of fore wing considerably pale within its margins.
 Mesopleura black. Stigma entirely piceous. Penis valve fig. $456.5-6 \mathrm{~mm}$.

ỏ testacea (Jurine)
Key to Species of G Groups (mollis, alpestrie, lativentris and staudingeri).
The representatives of these groups are all arctic-alpine or northern subalpine heath and moorland species. It is thus convenient to treat the different groups together, although they are not necessarily closely related. The adults are black in colour with more or less pale underface, pronotum, legs, tegulae and apex of abdomen. P. alpestris, with its smooth mesopleura, would run to the B Groups in the group ley above, and is therefore also dealt with in the key to species of those groups, though its natural affinities in structure and habit lie in the present group. Some of the species here wore duplicated by Enslin in different genera: P. mollis, for example, reappears as Pachynematus penegalensis. P. alpestris is treated by Fnslin as a Pachynematus, but he also says that it may be no more than a form of Pristiphora maesta.

The European species of the lativentris and alpestris groups were recontly revised by Lindqvist (1952, Notul. ent., Helsingf. 32: 80-119), and the staudingeri group by the same author (1953, Opusc. ent. $18: 220-4$).

1 Mesopleura dull with donse surface sculpture.

- Mesopleura shining without surfaco soulpture.
(Sawsheath of $\$$ very short and in dorsal view broadly rounded at apex where it is about as broad as apex of hind tibia (fig. 417). Saw fig. 434; penis valve fig. 469). $\sigma 4.5-5.5 \mathrm{~mm}$.; $? 5-6 \mathrm{~mm}$.

Larsa on Betula. England: Devon, Dorset, Surrey, Herts., Beds. and Hereford. IV-F. N. and C. Europe. (\dagger Benson, 1934, Ent. mon. Mag. $70: 203$ and 1940, Trans. Herts. nat. Hist. Soc. 21 (2) : 227).
$\ldots \ldots \sigma^{*}$ and 9 ($=$ strandi Konow Benson nec Konow) alpestris (Konow) mall, almost entirely black species ($4.5-5.5 \mathrm{~mm}$.) with only middle of tibiae, stigma and C of fore wing obscurely paler. Head with warts. Sawsheath of $\%$ from above as broad as apex of hind tibia and deoply emarginate apieally (fig. 461). Penis valve fig. 467.

Larva on Salix herbacea L., S. phylicifolia L. etc., but not yet described. Frequent in the arctic-alpine zones on the tops of the Grampian Mountains in Perths., Inverness, Aberdeen and Angus. England: banks of the Upper Tees in Durham and N. Yorks. Ireland: sea level at Wexford (1902, J. J. F'. X. King) and the Mullet, in Co. Mayo, Annagh (1936, A. W. Stelfox). V-VI. Arctic Eurasia and high Alps of Central Europe. (\dagger Benson, 1935, Trans. R. ent. Soc. Lond. 83 : 36)
of and q ($=$ asperlatus Benson, Byperborea Malaise) staudingeri (Rutho)

Figs. 457-8.-Head from above of Pristiphora Group C: 457, mollis; 458, breadalhanensts.
Frgs. 459-60,-Mesonotum of Pristiphora: 459, borea: 460, breadallanensis. Figs. 461-6.-.Sawsheath of Pristiphora from above: 461, staudingeri ; 462, mollis ; 463, carinata; 464, borea; 465, lativentris; 466, breadalbanensis.

3 (2) Labrum, pronotum, tegula, coxae, femora and bases of tibiae as well as C reddish-yellow, but stigma often picoous. Sawsheath of q triangular in dorsal view (cf. fig. 463) \qquad

4 (3) Scutellum shining and almost impunctate. Sawsheath of q in dorsal view either broadly rounded at apex without a medial projection, or strongly tapering behind and triangular in form (fig. 463). Heath and moorland species
Scutelluma either dull with dense surface sculpture, or, if shining, then distinctly punctured at least anteriorly. Sawsheath of 9 either tapering, rounded, or, if truncate, with a narrow medial projection (figs. 462, 465-6). Northern moorland or arctic-alpine species. .6
5 (4) Sawsheath of 8 subtriangular in dorsal view (fig. 463). Anterna with third segment about as long as height of an oye in of and clearly longer in ax. Penis valve fig. 471. 6-8 mm.

Larva on Vaccinium. In Scotland known only frow Aberdeenshire: Bramatr (B. Harwood, 1931) and Inverness-shite: near Aviemors (P. Hapwood, 1944-5, R. B. B., 1934 and 1952); Wales: Radnor Forest, above 2000 ft. (R. . B. B., 1953). (\dagger Berison, 1935, Trans. R. ent. Soc. Lond. 83 : 34). IV-VI. N. and Subalpine Europe
of and $\frac{?}{}(=$ pallipes Fallén nec Lepeletier) carinata (Hartig)

- Sawsheath as broad at apex in dorsal view as apex of hind tibia, rounded and not reaching as far as cerci. Antenna with third segment shorter then height of an cye in the q and only as long as height of an eye in the δ. Penis valve cf. fig. $469 . \quad 5-6 \mathrm{~mm}$.

Larva on Betula. So far only recorded from Devon: the Creat Haldons, iii-iv.1924-7 (J. F. and R. C. L. Perkins), Surrey: Oxshott, iv. 1938 (K. M. Guichard) and Herts. : Bricket Wood, ini. 1935 (R. B. B.). (†Benson, 1934, Ent. mon Mag. $70: 203$ and, 1953, $89: 153$). N. Europe ot and $?$ ($=$ pachyvalvis Konow, Benson mee Konow) pseudocoactula (Lindquist)
6 (4) Head with a frontal field surrounded by a carina (fig. 457) ; and within this carina, adjoining the front ocellus, is a shiny area with only very sparse tubercles. Sawsheath in $\%$ in dorsal view not reaching back as far as the cerci, and narrowing behind from a broad base and truncate at apex (fig. 462). Penis valve fig. 468. 6.7 .5 mm .

Larva on Vaccinium myrtillus L., etc. Scotland: common in Perths., Inverness, Angus and Aberdeen in moorland localities and extending to the summits of the highest mountains; Wales: Monnouthshire; England: found on the higher ground of Cumbertand, Yorks,, Lancs., Cheshire, Notts and Hereford; Ireland: Cos. Wicklow and Cavan. V--VII. N. and subalpine Eurasia.................................... and q mollis (Hartig) Head without a definite carina surrounding the frontal area (fig. 458) and without a conspicuous shiny area with only sparse tubercles in front of the front ocellus (coactula complex).
7 (6) Larger species ($5.5-7.5 \mathrm{~mm}$.). Mesonotum and scutellum largely dull with dense sculpture
Smailer species ($4-6 \mathrm{~mm}$.). Mesonotum at least behind and scutellum with shining interspaces between the punctures.

Dark species with hind femur and in ot hypopygium infuscate; 아 sawsheath fig. 465. Peniş valve fig. 472.

Frequent in the arctio-alpine zones on the tops of the Grampian Mountains: Perths., Inverness, Angus and Aberdeen. VI-VII. Arctic and Alpine Europe.............. ${ }^{\text {a }}$ and $甲(=$ seotious Cameron) lativentris (Thomson)
8 (7) Hind femur mainly black and clypeus truncate. of with front lobes of mesonotum flat, as broad as long, and more or less fused with medial suture partly obsolete (fig. 460); sawsheath at least as broad as apex of hind femur (fig. 466). Saw fig. 435; penis valve fig. 474.

Frequent in the high moors and aretic-alpine zones of the Grampian Mountains: Perthe., Inverness, Angus, Aberdeen and, no doubt, elsewhere; England:

Figs. 467-74.-Penis valve in Pristiphora Group C: 467, staudingeri; 468, mollis: 469, alpestris; 470, albilabris; 471, carinata; 472, lativentris; 473, borea; 474, breadalbanensis.
on the summits of the Pennine Range to Cheshire, Derby. and Yorks.; Ireland: top of Gearhan (2423 ft.) in the Slieve Mish Range, S. Kerry (A.W. Stelfox, 1946). $\overline{-V I I . ~ A r c t i c ~ a n d ~ A l p i n e ~ E u r o p e ~}$
d and q (= corpulentus Konow, tromsöensis Kiaer)
. breadalbanensis (Cameron)

- Hind femur mainly brown. Clypeus more or less emarginate medially. \% with front lobes of mesonotum together longer than broad, convex, and separated from each other by a normal suture (fig. 459); sawsheath narrower than apex of hind femur (fig, 404). Penis valve fig. 473.

Only known from Perthshire: near the summits of Schiehallion, and Beinn à Chuallaich, vi.1931. (\dagger Benson, 1953, Ent. mon. Mag. $89: 153$). Aretic

9 (3) Stigma of fore wing piceous and darker than C. © sawsheath in dorsal view narrower basally than apes of hind tibia. Penis valve fig. $470.6-7 \mathrm{~mm}$.

Larva on Betula. Kigland : Staffs., Burnt Wood v. 1934 (H. W. Daltry); Scotland: Inverness, Avemore, v, 1943-1952 (P. Harwood). (\dagger Saunt, 1936, Ent. mon. Mag. $72: 116$) 8 \& albilabris (C. G. Thomson)
Stigma brown and not darker than c. q sawsheath as broad basally as apex of hind tibia. Penis valve similar to fig. $473.6-7 \mathrm{~mm}$.

Larva unknown. Scotland, Inverness, Aviemore, v.1947-48 (P. Harwood) New British Record. Finland and N. Sweder....g q qrönblomì (Hellén)

D Group (erichsonii).

One species, $8.5-9.5 \mathrm{~mm}$. long. Mainly black apart from the red girdle covering the middle abdominal segments; also yellow are the labrum and legs (apart from bases of coxae, apices of front and middle tarsi, apex of hind fermur, apical half of hind tibia and whole of hind tarsus, which are black). Wings subhyaline; stigma of fore wing black; C and rest of venation brown to piceous.

Normally entibrely parthenagenetic, rarely producing males. Sporadically and locally abundant and destructive to Larix decidua Miller and leptolepis Harris in plantations in Britain and has occurred also in Wicklow in Ireland, IVVII. Introduced from N. and C. Europe. Occurs throughout the northern temperate region to E. Siberia and N. Anerica $\ldots \sigma^{2}$ and 9 erichsonil (Hartig)

Key to Species of E Grours (abietina and wesmali).
 Females.

1 Sawsheath in dorsal aspect tapering from base to apex (fig. 476) or bulbous at base with a tepering apex (fig. 477). Sides of ninth tergite flanking the sawsheath shining with only scattered or feeble punctures (fige 481-2) 2

- Sawsheath with basal portion parallel sided in dorsal aspect (fig. 475). Sides of ninth tergite flanking the sawsheath dull with surface sculpture between the punctures (fig. 485)
2 (1) Sawsheath bulbous at base and longer (fig. 477), so that, in lateral view, the apical truncation is clearly less than the length of the lower margin (fig. 482). Ovipositor at loast as long as the 3 basal hind tarsal segments. Hind femur clear yellow or infuscate below.
- Sawsheath tapering from base to apex in dorsal aspect and short (fig. 476) so that, in lateral view, its apical truncation is about as long as its lower margin (fig. 481). Ovipositor scarcely longer than 2 basal hind tarsal segments. Hind femur darkened above at apex. 6-7.5 mm. Saw fig. 489.

Larva on Pieea and Abies. Throughout Britain. (†Morice, 1906, Ent. mon. Mag. 42 : 250). V-VIL. N. and C. Europe............ 오 saxesenii (Hartig)
3 (2) Larger ($6-7.5 \mathrm{~mm}$.). Sc of fore wing more than its own length from origin of M from R (cf. fig. 409) ; C so swollen apically that it entirely obliterates intercostal area at the point where Rs +M leaves R (fig. 484). Interantennal crest evenly rounded and scarcely produced in profile (as in Amauronematus) (fig. 384). Ovipositor half to three-fifths as long as hind tibia. Attached to Larix.

- Smaller ($5-6 \mathrm{~mm}$.). Se of fore wing less than its own length from origin of M from R (cf. figs. 410-1) ; C less swollen apically so that it does not entirely block out intercostal area at the point where $R s+M$ leaves R (fig, 485). Interantennal crest normal and slightly produced in profile (cf.fig. 385). Ovipositor two-thirds as long as hind tibia. Saw fig, 486.

Inarva on Pices and Abies. Discovered in Frorest of Dean, Glos., in 1949. (\dagger Denson, 1950, Ent. mon. Mag. 86 : 223). V-VI. Ecandinavia subaretica (Forselund)

amb. 478

479

Figs. 475-9.-.-Sawsheath from above in Pristiphora Groups E and F: 475, abietina; 476, saxesenai ; 47, wesmaelii; 478, anbigua: 479, amplibola.
Figs. 480-3.-Sawshoath laterally in Pristiphora Group E : 480, subaretica; 481, saxesenii; 482, wesmaeli; 483, abietina.

Fige. 484-5.-Base of costa in fore wing in Pristiphora Group E : 484, wesmali: 485, abietina.
Figs. 486-91, Saw in Pristiphora Groups E and F: 486, subarctica; 487, wesmaeli ; 488, abielina; 489, saxesenti; 490, amphibola; 491, ambigua.

4 (3) Ovipositor (sawsheath + basal plate) shorter than a front tibia ($0.9: 1.0$); distance between cenchri more than one and a half times the breadth of one of them. Saw fig. 487.

Larva on Larix decidua Miller and leptolepis (Sieb, and Zuce.) Gord, Throughout British Isles. V-FII. (†Morice, 1919, Ent, mon. Mag. 55 : 204)
q. wesmaeli (Tischbein)

- Ovipositor longer than front tibia ($1 \cdot 1: 1 \cdot 0$) ; distance between cenchri less than one and a half times the breadth of one of them.
Larva on Larix decidua Miller and leptolepis (Sieb. and Zuce.) Gord. England : Hants., Surrey, Norfolk, Salop, and Hereford; Wales : Radnor. III-V. (\dagger Benson, 1954, Ent. mon. Mag. $89: 113-4$). Switzerland and Gemany.. q glauca Benson
5 (1) Smaller ($5-6 \mathrm{~mm}$.) with the ovipositor longer than the 4 basal tarsal segments together and longer than the middle tibia, Saw fig. 488.

Larva on Picea and Abies. Widespread throughout British Isles and locally destructive. (\dagger Morice, 1906, Ent. mon. Mag. $42: 250$.) V-VII. N. and C. Europe. $\%$ ($=$ pini Retzius) abietina (Christ.)

- Larger (6-7 mm.) with ovipositor scarcely as long as the 3 basal tersal segments together and about as long as the middle tibia.

Larva on Picea and Abios. Probably widespread in plantations but heretofore confused with the preceding. (\dagger Benson, 1940, Trans. Herts, nat. Hist. Soc. 21: 227). V-VII. N. and C. Europe......... 9 compressa (Hartig)

Key to Species of E Grovps.

Males.

Swollen apex of C in fore wing does not entirely block out intercostal area at the point where $\mathrm{Rs}_{\mathrm{s}}+\mathrm{M}$ leaves R (fig. 485). Interantennal crest slightly angled in lateral view (cf. fig. 385). Dark spicules on basal flagellar segments (cf. fig. 436) much more plentiful on sides facing inwards and virtually absent from the lower part of the sides facing outwards. Attached to Picea and Abies.

- Swollen apex of C in fore wing entirely blocks out intercostal area at the point where Rs +M leaves R (fig. 484). Interantennal crest evenly rounded in lateral view, much as in Amauronemahus (fig. 384). Dark spicules on basal flagellar segments more evenly spread on outer as well as inner surfaces. Attached to Larix decidua Miller and Leptolepis Murr. 5
2 (1) Sc of fore wing at least its own length away from the origin of M from R (cf. fig. 409). Hind tarsus black throughout; hind tibia black-ringed apically. Penis valves figs. 497-9
Sc of fore wing less than its own length away from the origin of M from R (cf. figs. 410-1). Hind tarsus and apex of hind tibia brown below and piceous above. Penis valve fig. 496

Underthorax with at least mesepimeron infuscate. $4-5 \mathrm{~mm}$.
o subaretica (Forsslund)
(2) Hind ocellus less than twice its own diameter from back of head. Smaller ($4.5-5.5 \mathrm{~mm}$.) with pale mesopleura. Penis valve fig. 498
© abietina (Christ.)
4 (3) Mesopleura pale, without black fleck on sterno-pleural suture. Penis valve

(1) Distance between cenchri lose than one and a half time olplan (fang
 Distance between cenchri more than one and a half times the breadth of one of

Key to Spectes of F Group (ambifua).
A
Paler species with at least pronotum pale margined in 9 and extensively pale in of together with the tegulae; of black with yellow on labrum, clypeus,
inner orbits, fore and middle femora, tibiae, tarsi and often also the masopleura and hind femur ; ${ }^{*}$ with orbits and face below antennas pale. Ovipositor in q slightly shorter than a hind tibia and, in dorsal viem, the projecting part slighty longer than broad and with a blunter apex (ig. 478). Saw with 20-21 segments, with lateral teeth on segments $9-19$, and in form much shorter compared to its length than in omphibola (fig. 491). Penis valve of of with lateral flap contracted and beaked at apex (fig. 492).

Larva on Pieea and Abies. Widespread in Britain. IV-V. N. and C. Europe................... ond $^{\pi}$ and ($=$ furvercens Cameron) ambigua (Fallén)

Figs. 492-9.-Penis valve in Pristiphora Groups E and F : 492, ambigua; 493, amphibola; 494, wesmaeli; 495, glauca; 496, subarctica; 497, saxesenii; 498, abietina; 499, compressa.

Darker species with pronotum entirely black in $\%$ and only edged with pale colour in $\hat{\sigma}$; ㅇ less richly marked with yellow, having the mesoploura and hind femur black; $\overline{3}$ with inner orbits black. Ovipositor clearly longer than a hind tibia and, in dorsal view, strongly exserted, expanding at the base and then tapering to an emarginate apex (fig. 479). Saw with 22-24 segments and with lateral teeth on margins of segments $10-19$ (fig. 490). Ponis valve of the on with lateral flap evenly tapering to apex and almost as long medial flap (fig. 493).

Larva on Picoa and Abies (L.) Karsten. Widespread in Britain. IV-V. C. Europe. (\dagger Benson, 1948, Ent. mon. Mag. $84: 162-3$)
σ^{*} and $\underset{q}{ }$ amphibola (Förster)

Genus Amauronematus Konow.

Amauronematus are early spring insects, among the first to appear, and have but a single annual flight. They are mainly attached to Salix, though a few species occur on Betula, Populus and Vascinium. They are concentrated in the north and occur as far into the arctic regions or as near to the summits of mountains as does Sulix. About 130 species are now distinguished in the world, though no doubt a great many more have yet to be found and described, some even in Britain, where already 21 are now recognized. Up to 1929 only seven of our species had been recorded, but in that year R. C. L. Perkins (Ent. mon. Mag. 65 : 31-33) added six to the list and eight more have since been found.

In the following account A. amentorum has been transferred here from Pristiphora (it is sometimes treated as belonging to a distinct genus, Pontopristia Malaise, together with a few other species whose larvae live likewise inside catkins of Salix). A. fihraci has been removed from Amauronematus to Nematus. In the keys that follow I have also included Nematus reticulatus, as it is sometimes mistaken for Amauronematus.

Key to Species of Amauronemaius.

Females.
1 Wither sawsheath in dorsal view narrow, at least behind where it is acute, rounded or at most narrowly truncate (not more than 3 times the medial breadth of a cercus (figs. 504-13)) ; or ovipositor longer than the hind femur (fig. 513)
.2
Sawsheath in dorsal view not tapering behind, though it may be broadly rounded, truncate or emarginate at apex (figs. 514-23), where it is more than 3 times as broad as a cercus; the whole not longer than the hind femur (cf. fig. 512) 12
2 (1) Ovipositor shorter than hind tibia (fig. 512).................................... 3
Ovipositor longer than hind tibia (figs. 508 and 513).
Reddish-brown species with black antenna and more or less marked with black on lateral lobe of mesonotum and basal tergites of abdomen. Saw with very prominent teeth (figs. 525 and 530). $7-8 \mathrm{~mm}$. long.

Larvae undescribed but adults have been bred from larvae on Salix aurita L. Only known from Sussex (Tilgate Forest), Surrey (Hindhead), Bucks. (Whaddon Chase) and Herts. (Bricket Wood). IV. (\dagger Benson, 1948, Ent. mon, Mag. 84 : 28). Northern Eurasia to Kamtchatka.

오 (nec longiserra Thomson Cameron) longiserra (C. G. Thomson)
3 (2) Abdomen with third to fifth tergites at least flecked with black medially and often almost entirely black (figs. $503 a-b$) . 4

- Abdomen with third to fifth tergites always entirely reddish brown (figs. $502 a-b) . \quad 7-9 \mathrm{~mm}$.

Fig. 500-Amauronematus abnormis i.
Fig. 501-A, abnormis 우.

Variable in colour, basically reddish-brown with white on face and black antema; more or less marked with black on ocellar region and thorax where this may be limited to a fleck on the lateral lobes of the mesonotum, the sculellum and the sternopleural line or may spread to cover the whole thorax. Abdomen nearly always black on first tergite and sawsheath; in darker specimens the black spreads to the second tergite and forwards from the apex to the seventh tergite, so that in the darkest specimens the first and socond as well as the seventh and following tergites are marked with black (fig. 502 c). This species is structurally scarcely distinguishable from A. fallax, but fallax is more northern in distribution and is usually much darker with the abdomen often entirely black above ; and in the palest examples, where

Figs. 502-3.-Colour pattern of \uparrow abdomen in Amauronematus histrio group :
(a) palest ; (c) darkest. 502, histrio; 503, fallax.
the abdomen is mainly reddish-brown, the third and fourth tergites are always flecked medially with black (cf, figs. 502 and 503). Sawsheath variable in form but often rather broad apically (fig. 505). Saw fig. 524.

Larva on Salix alba, L., atrocinerea Brot., aurita L., fragilis L., etc. Com. mon locally throughout Britain and Ireland. III-VI. C. and N. Europe to Caucasus, N. Asia and N. America

우 ($=$ glenelgensis Cameron) histrio (Lepeletier)

4 (3) Species not mainly black above or with pale stigma. 5

5 (4) Wings normally developed and reaching beyond apex of abdomen.......... 6
Wings clearly shorter than abdomen and very abnormal and variable in venation (fig. 501).

Dull insects with heavy coriaceous sculpture all over. Black except for the more or less yellow head and mesonotum. Winga hyaline with yellow stigma and piceous venation. Ovipositor shorter than hind tibia and sheath acute behind in dorsal view (fig. 509). Saw figs. 527 and 532. 5-6 mm.

Larva undescribed but probably attached to Salix herbacea L., etc. Only known from near the summit (over 4000 ft) of Mt. Braeriach, Inverness, in the Cairn Gorms, where it was discovered in VI-VII, 1934. (\dagger Benson, 1935, Trans. R. ent. Soc. Lond. 83:30). High arctic species: Laphard, Novaya Zemlya, New Siberian Islands, N. Bering Strait, Alaska, North West Territory of Canada and Bafin Land. q q abnormis (Holngren)
6 (5) Cerci short (sawsheath viewed from above projects backwards about twice as far as length of cercus (figs. 506-7)). Front lobe of mesonotum and under. thorax entirely pale.
Cerci long (sawsheath viewed from above does not project beyond cerei by more than half length of a cercus). Front lobe of mesonotum and underthorax often marked with black. 8
(6) Antenna conspicuously pale beneath at apex. Scutellum ontirely, and its post-tergite mainly pale. Sawshoath fig. 507; saw figs. 535 and 539. $6.5-7.5 \mathrm{~mm}$.

Head and thorax mainly yellow, except for black depressed parts of mesonotum; abdomen mainly green fading to yellow, except for a medial black vitta more or less developed on tergites $1-3$ or -7.
Larva on Salix viminalis L. Probably widespread in Britain but so faf only known from osier holts in Devon, Berks., Bucks., Herts., Beds., and Lancs. V-VI. (\dagger Perkins, 1929). C. and N. Europe and Siberia

9 miltonotus (Zaddach)

- Antenna piceous. Scutellum posteriorly, its post tergite and the first abdominal tergite entirely black. Sawsheath figs. 506 and 512; saw figs. 530 and 540. $5.5-6.5 \mathrm{~mm}$.

Front and lateral lobe of mesonotum often entirely red. Abdomen mainly black above and orange beneath (in life the orange is green at first).

Larva on Salix spp. Only known from England: Dantmoor (Deyon) and Upper Teesdale (Yorks, and Durham); and Ireland: Wichlow. IV-VI. (\dagger Perkins, 1929). N. and C. Europe, Siberia and N. America
q sagmarius Konow
8 (6) Sawsheath in dorsal aspect much broader at base than apex, where it is acntely or obtusely rounded (figs. 504-5).

- Sawsheath in dorsal aspect very thin, almost parallel-sided, but with a truncate apex (fig. 510). $7-9 \mathrm{~mm}$. Saw figs. 526 and 531.

Larva not desoribed but attached to Salix repens L. Local in England: Devon, Dorset, Sussex, Middlesex, Herts., Hunts., and Cumberland; Scotland: Inverness, Moray and Sutherkand. IV-VI. N. and C. Europe, Siberia and N. America. $\%$ mundus Konow
9 (8) Malar space not longer than distance between antennal sockets (fig. 556). Saw with only the apical segments up to 13 , and sometimes the 2 basal ones, bearing marginal teeth (figs. 528-9). Small species ($5-7 \mathrm{~mm}$.) with seulpture of head and thorax often obsolote. 10
Malar space longer than distance between antennal sockets (fig. 557). Saw with every segment bearing a marginal tooth................................

10 (9) Mesopleura shining, without surface sculpture. Front lobe of mesonotum with medial furrow obsolescent behind. Ovipositor (fig. 504) usually about as long as hind tibia. Saw (fig. 529) very narrow (so that in the middle, together with its support, its width is less than that of the apex of the hind tibia) with 19-23 segments, of which the 8-13 apical ones and 2 basal ones

Figs. 504-11.-Sawsheath from above in Amauronematus : 504, widuatus; 505, histrio; 506, sagmarius ; 507, miltonotus: 508, longiserra; 509, abnormis; 510, mundus; 511 , complus.

Figs. 512-3.-Sawsheath in lateral view in Amauronematus :
512, sagmarius; 513, longiserra.
have marginal teeth. Very variable in colour: in the typical pale form, which is the predominant one in Britain, the head (except for the ocellar basin), mesopleura, tegula, edge of pronotum, legs, spot on scutellum, underside and apex of abdomen are yellow; but in the darkest forms only the mouthparts; outer orbits, tegula, legs and apex of abdomen are pale. $5-6.5 \mathrm{~mm}$.

Larva on Salix repens L., atrocinerea Brot., aurita L., caprea L., etc. Locally common throughout Britain and Ireland. III-V. C. and N. Europe

ㅇ (= longiserra Thoms., Cameron nec Thomson) viduatus (Zetterstedt) Mesopleura, at least in the middle, dull with fine coriaceous sculpture. Front lobe of mesonotum with medial furrow generally clearly defined. Ovipositor usually shorter than hind tibia. Saw (fig. 528) much broader (its width in

Figs. 514-5.-Sawsheath of Amauronematus amentorum :
514, ventral view ; 515, lateral view.
Figs. 516-23.-Sawsheath from above in Amauronematus : 516, arcticola; 517, puniceus; 518, taeniatus ; 519, tunicatus; 520, humeralis ; 521, fasciatus; 522, crispus; 523, trautmanni.
the middle, together with that of its support, is about the same as that of the apex of the hind tibia) with 13-17 segments, of which the 6-11 upical ones bear marginal teeth but the two basal ones do not. Mainly black species with pale on mouthparts, clypeus, temples, more or lesg orbits,

Larva on Salix atrocinerea Brot, auxita L., repens L., etc. Common locally in S. England: Devon, Sussex, Kent, Surrey, Middlesex, Bucks, Herts. and Hunts. III-V. (\dagger Benson, 1948, Ent. mon. Mag. 84 : 29. This species was incorrectly recorded as British by Morice, 1906, Ent. mon, Mag. $42: 135$ from Ben Nevis; the specimen on which this record was based is in the Morice collection and is Pristiphora staudingeri Ruthe q.v.). C. and N. Europe and N. Asia to Kamtchatho
¢ ($=$ saarineni Lindquist Benson) leucolaenus (Zaddach)
11 (9) Smaller arctic-8, pine species ($4 \cdot 5-5.5 \mathrm{~mm}$.). Head and thorax more or less shining with coriaceous sculpture obsolescent. Very variable in colour but cerci always pale (see Nematus reticulatus Holmgren complex, p. 211-3).

- Larger lowland species (8-9 mm.). Head and thorax mainly dull with dense coriaceous sculpture. Cerci more or less dark.

In the saw (cf. fig. 524) and sawsheath (cf. fig. 505) and other structures this species is scarcely distinguishable from histrio, though very variable. The greater extension of black on the tergites of fallax (as shown in fige. 502-3) will always distinguish the iwo species; tergites 3 and 4 each always have at least a black medial apot in fallax, but never in histrio. Saarinen (1949, Ann. ent. fenn. 15:55-82 and 1950, op, cit. 16:18-24 and 44-63) has described several of the forms of this very variable species as distinct species.

Larva on Salix atrocinerea Brot., aurita L, and repens L. England: only known from Devon, Dorset, Hants., Warcs., Norfolk, and Yarks.: much commoner in Scotland: Perths., Angus, Aberdeen, Inverness, Moray, Nairn and Sutherland; and in Ireland: Cos. Dublin and Cavan. IV-V. C. and N. Europe to Caucasus, to East Siberia and across N. America ¢f (eanaliculatus Hartig Cameron nee Hartig, humeralis Lepeletier Cameron nec Lep.)
failax (Lepeletier)
12 (2) Larger species ($5-8 \mathrm{~mm}$.), with the abdomen not laterally compressed and the sawsheath not set up erect (fig. 516-23). 13

- Srmall species (4-5 mm.), with the abdomen at the apex laterally compressed. Sawsheath tridentate at apex and carried almost erect (figs. 514-5).

Clypeus very feebly emarginate in front. Black with the following parts yellowish-white : face bolow the antennae, edge of pronotum, tegulae, legs. and more or less underside of abdomen.

Larva in catkins of Salix repens L., caprea L., etc, feeding on the developing seeds. Few British records: Devon (Bovey Tracey, 1925, R. C. L. Perkins), Surrey (Bookhamb Common, 1946-49, P. W. E. Currie); Bucks. (Aylesbury, larvae 1944, L. W. Goodson, and Whaddor Chase, lavae 1045, R. B. B.), and Norfolk (Brundoll, 1879, J. B. Bridgman). IV-V. (†Perkins, 1929, Trans. Devon. Ass. Adv. Sci. 61 : 306). N. and' C. Europe, Siberia and N. America * C ($=$ Pristiphora amentorum) amentorum (Förster)

13 (12) Stigma and costa pale yellow or white. Mesonotum and mesopleura often marked with pale colour.

- Stigrna and apex of costa piceous. Mesonotum and mesopleura entirely black 20
14 (13) Scutellum about as broad as its length, with the post-tergite, convex in the middle and dull all over, with dense coriaceous sculpture (fig. 559).

Plump species with dull surface sculpture, mostly orange yellow with the following parts black : anterna, ocellar spot, propleura, mark on each of the 3 mesonotal lobes, mesostornum, sometirnes a spot on scutellum, the metanotum and more or leas one or more of the basal tergites up to 8 , also baee of sawsheath. Wings slightly yellowish hyaline with yellow stigma, costa and basal venation; rest of venation piceous. Sawshanth fig. 517 .15

- Scutellum either with its breadth at least one-fifth less than its length including the post-tergite (fig. 562) or else flattened in the middle and sometimes shining (figs. 558 and $560-1$)

15 (14) Very variable in the extent of black on the abdomen; if however two or more of the basal tergites are mainly black, then there is no dark-centred pale spot each side of the first tergite. Frontal area of the head moro clearly defined. In the saw the middle teeth along the margin longer at the base than their depth (fig. 545). $5.5-6.5 \mathrm{~mm}$.

Larva on Populus tremula L. Lacally common in Devon, Hants., Surrey, Bucks., Herts, Essex, Beds., Warwicks. and Nous. V-VI. (\dagger Perkins, 1929). All Eurape including Iberian Peninsular ; also E. Siberia
¢ punieeus (Christ.)

532

Fios. 524-32.-Saw of Amouronematus : 524, histrio; 525, longiserva; 526, mundus ; 527, abnomis; 528, leucolaenus; 529, viduatus; 530 , longiserra 9th to 11 th tooth ; 531, mundus likewise; 532, abnormis likewise.

- Abdomen almost entirely black above up to the seventh tergite but the first tergite has a pale dark-centred spot each side. Frontal area of head searcely defined. In the saw the middle teeth along the margin deeper than their basal length (fig. 551). $5 \cdot 5-6.5 \mathrm{~mm}$.

Larva on Salix aurita L. and atrocinerea Brot. England : Bucks. (Whad-

Figs. 533-7.-Saw of Amauronematus : 533, amentorum ; 534, amplus; 535 , miltonotus ; 536, sagmarius ; 537, tunicatus.
Figs. 538-41.-9th to 11 th teeth of saw of Amauronematus : 538 , amplus ; 539, miltonotus; 540, sagmarius ; 541, tunicatus.

Frg. 542.-Saw of Nematus reticulatus.
don Chase, 1946-7, R. B. B.), Beds. (Kings Wood, 1947, V. H. Chambers), and Devon (Great Haldons, 1926, R. C. L. Perkins); Ireland: Co. Cavan (Drumcarban and Lough Mentis, 1941-47, R. C. Faris and E. F. Bullock). IV. (\dagger Benson, 1948, Ent. mon. Mag. 84 : 32). Lapland, Siberia and Alaska * 7 ($=$ rex Benson) tillbergi Malaise

16 (14) Lowland species, mostly over 6 mm . with the scutellum or post-tergite at least partly unsculptured and shining and the sculpture of the thorax often not coriaceous, and with most of the sternites of the abdomen marked with pale colour. .17

- Arctic-alpine species, mostly under 6 mm with the whole thorax, including the scutellum and post-tergite with dense coriaceous sculpture and the abdomen entirely black below except in the neighbourhood of the sawsheath.

Almost entirely black except sometimes for the following which are more or less yellow : temporal spot, inner orbits, tegula, knees, tibiae and tarsi: wings hyaline with yellowish-white stigma. Sawsheath fig. 516. This species is extremely similar to the subarctic A. tillbergi (see above) but the latter species has the middle marginal teeth on the saw at least almost as deep as their basal lengths (fig. 551) while arcticola has them only half as deep (fig. 552).
Larva unknown but apparently attached to Salix herbacea L. Found only in the arctic-alpine regions of the Grampian mountains (Perth and Inverness). VI-VII. (\dagger Berson, 1935, Trans. R. ent. Soc. Lond. 83:31). Lapland, Siberia and Alaska. 9 ($=$ meluckiei Benson syn, nov.) areticola Euslin.
17 (16) Sawsheath in dorsal aspect truncate or broadly rounded at apex and slightly produced medially but not emarginate each side of the production (figs. 521 and 523). Post-tergite separated from scutellum by a continuous suture (fig, 562)
Sawsheath in dorsal aspect perceptibly tridentate at apex, slightly emarginate each side of the middle (fig. 522). Suture separating post-tergite from scutellum more or less obsolete medially (figs. 500-1).
Sawsheath with the setae curved and grouped into a lateral apical tuft each side. Saw with prominent marginal teeth almost as deep as their basal length (fig. 550). Very variable in colour : top of head, mesonotum and mesopleura reddish-brown, while the lower face, the pronotum and underside of abdomen are green in life, fading to yellow and all are more or less marked with black. 6-7 mm. Very similar to A. vittatus (Lep.), which has a normal suture separating scutellum from post-tergite and straight setae on apex of sawsheath.

Larva on Salix repens L., England: Devon, Somerset, Herts., Cambs., Hunts., Norfolk, Warwick. and Lancs. Wales: Glamorgan; Scotland: Caithness: Ireland: Weaford and Cavan. IV-VI. (\dagger Benson, 1948, Ent. mon. Mag. 84 : 30), Holland, Sweden and Fwland
f ($=$ viltatus Lep. aucti, angl. nec. Lep.) erispus Benson
18 (17) Sawsheath with apex more rounded in dorsal aspect and with setae almost straight and mainly set from this apex in a long even fringe (figs. 520 and 523)
.19
Sawsheath truncate at apex in dorsal aspect and with setae well doveloped at the sides, while those at the apex are clearly curved (fig. 521). $7-8 \mathrm{~mm}$.
Scutellum narrower than its length including the post-tergite (fig. 562). Saw with middle teeth not as deep as their basal length (figs. 544 and 549).

Larva on Salix caprea L. etc. England: Devon, Hanta., Herts., Bucks., Beds. and Lancs.; Scolland: Lanark and Inverness; Ireland: Cos. Kildare and Cazan. V-VI. (†Benson, 1933, Stylops 2:256-7). N. and C. Europe to E. Siberia and Alaska.... 9 ($=$ perkinsi Benson) faseiatus Konow
19 (18) Paler species with orbits, sidos of mesonotal lobes, scutellum and mesopleura mostly reddish-yellow; venter of abdomen green to white. Mesonotum less heavily sculptured, and shining. Scutellum about as broad as its length including the post-tergite. Sawsheath subtruncate at apex in dorsal aspect (fig. 523). Saw with very prominent marginal teeth, the middle ones being much deeper than their basal length (figs. 546 and 553). $6-8 \mathrm{~mm}$.

Laroa undescribed but presumably on Salix. England: Devon, Hants., Bucks., Herts., Salop; Scotland: Lanark and Inverness; Ireland: Cos, Dublit, Wicklow and Casan: IV-VI. (\dagger Perkins, 1929). N. and C. Europe....f(=imperfectus Zeddach, Cameron, nec. Zaddach = piliserra

Lindquist $=$ cameroni Perkins $=$ excellens Forsius) trautmanni Enslin
Darker species, almost entirely black except for the more or less white inner orbits, temporal spot, pronotum, apices and sometimes whole of abdominal sternites. Mesonotum heavily coriaceous and dull; seatellum narrower than is its length including the post-tergite. Sawsheath roundod apically in dorsal aspect (fig. 520). Saw with middle marginal teeth not as deep as basal length (figs. 543 and 548). 7-8 mm.

Larva on Salix atrocinerea Brot. England: Devor, Hants., Surrey, Berks., Bucks., Herts. and Beds. IV-V. N. and C. Europe and E. Siberia
of humeralis (Lepeletier) 20 (13) Mesoscutellum very flat, Ionger (without past-tergite) than broad, and shining between scattered punctures. Sawsheath in dorsal view broadly rounded at apex (fig. 519)

- Mesoscutellum convex, broader than long (without post-tergite), and dull with dense surface sculpture at least at sides ($f f$. fig. 559). Sawsheath in dorsal view emarginate at apex (fig. 518). 7-9 mm. Saw figs. 547 and 554.

Figs. 543-7.-Saw of Amauronematus : 543, humeralis; 544, fasciatus; 545, puniceus; 546, trautmann; 547, tarwiatus.
Figs. 548-54.-9th to 11th teeth of saw of Amauronematus: 548, humeralis; 549, fasciatus; 550 , crispus; 551 , tillbergi: 552 , arcticola; 553 , trautmanni; 554, taeniatus.

Larva on Salix fragilis L. and other smooth leaved Salix spp. Only known from single specimens in England: Herts. (Boxyoor, 1936, and Happenden), Oxon. (Souldern, 1946), Warwicks. (Coventry, 1923, J. W. Saunt) and Scotland: Inverness (Aviemore, 1946, P. Harwood). IV-V. (+ Perkins, 1929). N. and C. Europe. Siberia and N. America....? taeniatus (Lepeletier) Pale colour greenish-white except the temples, which are yellow; abdomen pale below but the tergites above are piceous except for thoir hind and lateral margins. Legs with hind femur more or less infuscate. Mesopleura above dull in the middle with dense surface sculpture. $6.5-7.5 \mathrm{~mm}$. Saw very similar to that of S. taeniatus.

Larva on Salix aurita L., caprea L., cinerea L., and repens L., etc. Only known from two or three specimens found on the Culbin Sands near Forres, Moray, and at Aviemore, Inverness, 1951-2. V. (\dagger Bensom, 1953, Ent. mon. Mag. 89 : 152). Europe, Siberia and British Columbia

* \ddagger semilacteus (Zaddach)

Pale colour yellow except lower face and pronotum, which are white; abdomen pale with only the first and second tergites and sometimes the sternites more or less black. Legs with femur entirely pale. Mesopleura shining and scarcely sculptured. $6.5-7.5 \mathrm{~mm}$. Saw figs, 537 and 541 .

Larva on Salix atrocinerea Brot., aurita L,, etc. Lacal in England : Devon, Hants., Surrey and Herts., and Ireland: Co. Wichlow. III-IV. (\dagger Perkits, 1929). N, and C. Europe............... ${ }^{\text {q }}$ tunicatus (Zaddach)

Males.

I have been unable to see males of the following speciss, which are therefore not included in the key, and may not occur at all in nature. I have indicated in brackets the species nearest to which they would probably run in the key, if ever found :
tillbergi Malaise (ef. puniceus).
tunicatus Konow (cf. histrio or fasciatus).
semilacteus (Zaddach) (cf. fasciatus).
amentorum (Förster) (from its small size, probably less than 4.5 mm ., and pale underside would be unmistakable).
1 Eyes large, so that malar space is shorter than distance between antennal sockets (fig. 556). Sternites, apart from hypopygium, almost entirely infuscate. Not more than 5.5 mm .
Hypopygium broadly rounded at apex (cf, fig. 563). Scutellum convex and strongly shining between the surface sculpture, and slightly longer than broad).

- Eyes smaller, so that malar space is at least as long as distance between antennal sockets (figs. 555, 557) ; or sternites almost entirely pale. Often more than 5.5 mm.
2 (1) Hind femur and tegula mostly pale. Mesopleura entirely smooth. Penis

- Hind femur and tegula more or less infuscate. Mesopleura clearly sculptured
in the middie. Penis valve fig. 573 .
3 (l) Eyes small (greatest measurement scarcely greater than breadth of clypeus) malar space long (at least one and a half times distance betwoen antennal sockets) (fig. 557). Head and thorax with dense and regular coriaceous sculpture. Tegula and edge of pronotum dark. Arctic-ulpine species.

Hypopygium with apical truncation narrower than apex of hind tibia (cf. fig. $\mathbf{3 6 5}$)
Eye larger (greatest measurement at least one-fifth more than breadth of elypeus) and malar space shorter (less than one and a half times distance between antennal sockets) (fig. 555). Head and thorax with coriaceous sculpture in part obsolete, or obscured by punctation or irregular surface soulpture. Tegula and edge of pronotum pale. Lowland species........ 5
4 (3) Projection to last tergite expanding behind with the upper face triangular and margined Iaterally. Penis valve with a long curved projecting apical spine forming about one-quarter of the length of the valve (fig. 569),

Figs. 555-7.-Face of Amauronematus: 555, traumanni; 556, viduatus; 557, abnormis.
Fics. 558-62.-Scutellum of Amauronematus : 558, arcticola; 559, puniceus ; 560-1, crispus; 562,fasciatus.
Figs. 563-5.-Hypopygium of of Amauronematus: 563, histrio; 564, humeralis; 565, mundus.

- Projection to last tergite almost parallel-sided and without any clearly defined triangular upper face. Penis valve with the apical spine short and blunt, forming scarcely one-tenth the length of the whole valve (fig. 577). 4. 5 -

5 (3) Scutellum (including post-tergite) one and a quarter times longer than broad (cf. fig. 562), scarcely convex, acute in front and shining betwaen often sparse punctures. Abdomen more or less infuscate below.

Hypopygium broadly rounded or truncato at apex (figs. 563-4) 6

- Fither scutellum scarcely longer than broad (figs. 559-61), or underside of abdormen entirely pals.6 Abdomen with at least middle tergites 3, 4 and 5 entirely yellow. Hypopygium broadly rounded at apex (fig. 563). Penis valve fig. $566,6-7 \mathrm{~mm}$.
or histrio (Lepeletier)
- Abdomen including tergites 3, 4 and 5, mainly black. Hypopygiam broady truncate at apex (fig. 564). Penis valve fig. $567.6-7 \mathrm{~mm}$.

ठ fallax (Lepeletier)
7 (5) Stigma and costa black. .8
Stigma and costa pale brown or yellow
(7) Hypopygium black and narrower apically, so that the truncate apex is narrower than the width of the apos of the hind tibia (fig. 565). Penis

- Hypopygium brown and less narrowed apically so that the apical truncation is broader than the width of the apex of the hind tibia (fig. 564). (Penis
 often shining between sparse punctures or obsolescent sculpture. 10
Mesonotum Iaterally and ofton soutellum and mesopleura more or less flecked with yellow stigraa and costa clear yellow. Scutellum convex and densely sculptured (fig. 559).

Hypopygium with apical truncation narrower than apex of hind tibia (fig. 565). Penis valve fig. $576.5-6.5 \mathrm{~mm}$.
(9) Mesopleura and scutellum ahining at least between scattered punctures or obsolescent sculpture. 11
Mesopleura and often scutellum dull all over with dense punctures and/or surface sculpture. 14
(10) Abdomon dark below (apart from hypopygium). 12

- Abdomen more or less pale yellow .. 17

12 (11) Hind tibial apurs shorter than apical width of hind tibia. Lowland species often over 5 mm . 13
Inner hind tibial spur longer than apical width of hind tibia. Arctio-alpine species under 5 mm . Penis valve fig. 575... Nematus reticulatus Holmgren
13 (12) Scutellum with patches of coriaceous sculpture in front. Penis valve fig. 571. Northern and western species. On Salix atrocinerea Brot., etc. $4 \cdot 5-5 \cdot 5 \mathrm{~mm}$.
Scutellum almost impunctate, with only sparse obsolescen sagmarius Konow valve not seen). Mainly southern species on Salix viminalus L. $4 \cdot 5-5 \cdot 5 \mathrm{~mm}$. valve not seen). Mainly southern species on Salix wiminalis L. $4 \cdot 5-5 \cdot 5 \mathrm{~mm}$.
${ }^{0}$ miltonotus Konow
14 (10) Inner orbits and entire underside of abdomen pale. Scutellum ineluding posttergite almost one and a quarter times as long as broad. .15
Inner orbits and more or less underside of abdomen (apart from hypopygium) infuscate. Scutellum scarcely longer than broad. 16
15 (14) Pale colour on face, pronotum and tegula creany-white. Underthorax black with a pale longitudinal band in the middle. Penis valve fig. $579.6-7 \mathrm{~mm}$.
t fasclatus Konow
Pale colour on face, pronotum and tegula yellow. Underthorax orange with a black band along the sterno-pleural line. Penis valve fig. $570.6-7 \mathrm{~mm}$. ${ }^{*}$ longiserra (Thomson)
16 (14) Post-tergite of scutollum longer in the middle than a cencher and clearly separated from the rest of the scutellum by a suture..................... 17
Post-tergite of scutellum very short (in the middle less than the length of a cencher) and with the suture defining it obsolescent (figs. 560-1). Penis valve fig. 578.

Hypopygium with apical truncation wider than apex of hind tibia

tong.

573

!eve.

Figs. 566-74.-Penis valve in Amauronematus : 566, histrio; 567 , fallax; 568 , mundus ; 569, abnormis; 570,longiserra; 571, sagmarius; 572, viduatus; 573, leucolaenus; 574, amplus.

pun. 576

Fie, 575.-Penis valve of Nematus reticulatus.
Figs. 576-81,-Penis valve of Amauronematus: 576, puniceus; 577, arcticola; 578, crispus; 579, fasciatus; 580, traumanni; 581, humeralis.
17 (11 Scutellum densely punctate all over 18\& 16)

- Scutellum shining laterally and between punctures.Underthorax entirely black. Hypopygium with apical truncation aswide or wider than apex of hind tibia (fig. 564). Penis valve fig. 580.
18 (17) Scutellum with a medial longitudinal furrow more or less developed. Hypopygium with apical truncation wider than apex of hind tibia (fig. 564). Mesosternum entirely black. Penis valve fig. $581.6-7 \mathrm{~mm}$.
of humeralis (Lepeletier)
- Scutellum without a medial furrow. Hypopygium with apical truncation narrower than apex of hind tibia (fig. 565). Mesosternum often more or less brown medially. Penis valve fig. 568. $5 \cdot 5-6.5 \mathrm{~mm}$. of mundus Konow

Genus Nematinus Rohwer.

A small genus of about 12 world and six European species, of which five occur in Britain. They are attached mainly to Betulaceae, and the section on Betula is sharply distinguished morphologically from the section on Alnus; but N. acuminatus of the former group has also been found on Corylus (Corylaceae) in Co. Dublin. For what is known of the biology of the Central European species see Stein (1926, Wien. ent. Ztg. 43: 105-26).

The eggs are laid in stems or in the mid-veins of leaves, and the saws are correspondingly tough and armoured (figs, 582-3). All the species are single-brooded.

Key tó the species of Nemationts.

1 Sawsheath of $\%$ acuminate behind in dorsal aspect (fig. 589) ; saw fig. 583. C less swollen apically in fore wing (at the origin of RS +M from R it is only about as wide as cell C at that point); anal cell of hind wing with a longer stalk (more than twice the length of cu-v). Eyes rounder in shape (1.3 to $1-2$ times longer than broad) and antenna with flagellum usually entirely pale except for the 2 infuscate basal segments above. Abdomen usually with the bases of several tergites black in $\stackrel{7}{7}$, and in δ^{-1} with the whole upper surface largely suffused with black. On Betula and Corylua...... 2

- . Sawsheath of 9 broadly rounded or truncate behind (figs. 590-1); saw fig. 582. C more swollen apically (at the origin of $\mathrm{RS}+\mathrm{M}$ from R it is about twice as wide as cell C at that point); anal cell of hind wing with shorter stalk (at most only 1.5 times as long as cu-v). Eyes longer in shape (at least 1.5 times longer than broad) and antennal flagellum often largely black, at least above on its basal segments. Abdomen with at most only its 2 basal tergites black in 9 , and in ${ }^{3}$ with 2 or 3 apical tergites as well. On Alnus. 3
2 (1) Abdomen with basal tergites covered with regular transverse coriaceous sculpture. Mesonotum usually with a black fleck on middle lohe and each
 head above, most of thorax and abdomen above mainly black. 6-7.5 mm. Penis valve fig. 587.

Larva on Betula. Has been found sparingly in England: Deoon, Surrey, Bucks., Herts., Warwick and Staffs.; Scolland: Argyll., Inverness and Sutherland (see Benson, 1935, Ent. mon. Mag. 71: 242). V-VI. N. and C. Europe to East Siberia
σ^{3} and $甲(=$ nigrostematus Malaise) caledonicus (Cameron)

- Abdomen without regular coriticeous sculpture on basal tergites. Mesonotum not marked with bleck and mesosternum only edged with black in 9 : ठै unknown, $6-7.5 \mathrm{~mm}$.

Larea usually on Betula but in 1941 was fonnd on Corylus avellana L. in Ireland: Co. Dublin, by A, W. Stelfox. Distributed sparingly throughout Britain and Ireland, tut no on has yet been seen. V-VI. N. and C. Europe to East Siberia. * 臽 acuminatus (C. G. Thomson)

Figs. 582-3.-Saw of Nematinus : 582, Luteus; 583, acuminatus.
Fies. 584-7.-Penis valve in Nematinus: 584, willigkiae ; 585, luteus; 586, abdominalis; 587, caledonicus.
Fig. 588.-Apical tergite of ${ }^{\circ}$ Nematinus luteus.
Figs. 589-91.-Sawsheath of Nematinus: 589, acuminatus;
590, willigkine; 591, luteus.

4 (3) Whole thorax yellow (except for mesosternum and sometimes al black fleck on each mesonotal lobe). Abdomen often entirely yellow and at most with first tergite marked with black.

- Almost entire head, whole of thorax and 2 basal tergites of abdomen black. $6-7.5 \mathrm{~mm}$.

Larva on Alnus. Common throughout Britain and Ireland. V-VII. All Eurape........? (=fuscipennis Lepeletier) abdominalis (Panzer)
5 (4) Sc and venation of base of fore wing yellow and paler than venation of rest of wing. Sawsheath slightly narrowed behind, where it is broadly rounded, not emarginate, in dorsal aspect (fig. 590). Mesosternum immaculate. Basal tergites of abdomen without punctures. Mesopleura in English, Welsh and Irish specimens with a longitudinal glabrous patch just above the sterno-pleural line. $6-8.5 \mathrm{~mm}$.

In Scotland the typical form of the species is replaced by Nematinus willigkiae pilosus subsp. n. which differs from the typical race in lacking the longitudinal glabrous patch on the mesopleura immediately above the sterno-pleural line. ${ }^{2}$

Larva on Alnus. Typical form from England: Cornwall, Devon. Hants., Warwicks., Oxford, Herts., and Norfolk; Wales: Glamorgan; Ireland: Co. Wicklow. (†Benson, 1935, Ent. mon, Mag. 71: 242). VI-VII. All Europe.
f willigkiae (Stein)

- Sc, base of M and base of Al in fore wing piceous and as dark or darker than venation of rest of wing. Sawsheath in dorsal aspect subparallel-sided and slightly emarginate behind each side of middle (fig. 591). Mesonotum with or without dark flecks. Basal tergites of abdomen with scattered punctures medially. Mesopleura without glabrous patch above sternopleural line. Saw fig. $582.6-8.5 \mathrm{~mm}$.

Larva on Alnus. Throughout Brilain and Treland commonly. VI-VIII. N. and C. Europe. . ${ }^{\text {(}}=$ ruficapillus Gmelin, Cameron, bilineatus Klug, Comeron nec. Klug. and antennatus Cameron). Iuteus (Panzar).
6 (3) Vein C of fore wing, clypeus, tegula, edge of pronotum and often mesopleura in part, yellow.
All venation, including C, piceous; clypeus, tegula and whole of pronotum entirely black,

Wings deeply infuscate at base. Penis valve fig. 586. 5-6.5 mim.
${ }_{0}^{a}$ abdominalis (Panzer)
7 (6) Wings subhyaline. Mesopleura all yellow and without glabrous patch above sterno-pleural line. Penis valve fig. 585. $5-6.5 \mathrm{~mm} . .$. . . ${ }^{6}$ luteus (Panzer) Wings infuscate. Mesopleura mostly black with a yellow feck, and in English, Welsh and Irish specimens with a conspicuous glabrous patch above sternopleural line. Represented in Scotland by pilosus subsp. n. (see above) which lacks this glabrous patch. Penis valve fig. 584 . $5-6.5 \mathrm{~mm}$.
§ willigkiae (Stein)

Genus Euura E. Newman.

$$
(=\text { Cryptocampus })
$$

A small genus with seven known European species, of which five occur in Britain. The larvae live, with or without galls, inside stems, leaf-petioles, leaf-veins or buds of Salix and Populus. The bud inhabiting species have a different type of saw (fig. 593) from the others, which are all very similar to fig. 592. Euura mucronata (Hartig), whose larvae live in Salix buds of many species, must surely be the commonest sawfly in N.W. Europe. Outside Europe the genus is very little understood, and it is not possible to estimate the number of valid species.
${ }^{2} 4$ d, 159 in the British Museum from Perths., Inverness, Argyll, Ross and Suther. land. Holotype, ㅇ, Scotland: Inverness, Aviemore, i.vii. 1944 (P. Harwood).

Key to Spectes of Fiuura.

Males and fomales.

Face with at least labrum, front margin of clypeus and base of mandibles, often also the inner orbits, yellow. Inner orbits smooth and shining. Frontal basin with a notch in the front wall so that it communicates with the median foven. Ovipositor not longer than hind tibia ($1: 1$ or more) and, in dorsal aspect, broad at the base, narrowing abruptly to the sharp apical flange (figs. 596-8 and 600). Eyes more oval (length to breadth as $1:$ less than $1-4)$
. 2
Face with at most labrum and mandible-base brown. Inmer orbits dull with rough surface. Frontal basin with the front wall entire. Ovipositor clearly longer than hind tibia ($1: c .0 .8$) and, in dorsal aspect, evenly accuminate (fig. 599). Eyes more elongate (1 : more than $1 \cdot 5$). $4 \cdot \tilde{0}-5 \mathrm{~mm}$. Saw as in fig. 592.

Larva solitary in stems of various species of Salix ond also recorded from Populus tremula L. In smaller stems a distinct swelling results but rot in stouter stems; the full-fed larva bores an exit hole before changing to a prepupa but overwinters in the gall. Possibly more than one species is confused here. Throughout Britain and Ireland. V-VI. Holaretie
δ and 9 (= angustus Hartig) atra (L.)
2 (1) Claws with inner tooth almost as long as end tooth. Cerci of tit reach back beyond apex of sawsheath. Sawshoath in dorsal aspect with rounded shoulders merging into broad medial triangular flange (figs. 596-8); lateral setae strongly curved or, if straight, direeted more backwards.

Larva singly in mid-rib, petiole or bud galls of Salix. 3

- Claws with inner taoth scarcely longor than its basal breadth. Cerci of q not reaching back further than apex of sawsheath. Sawsheath in dorsal aspect subtruncate at apex, with short sharp medial flange, and lateral setae set more outwards and very straight except at their tips (fig. 600). $5-6 \mathrm{~mm}$. Saw fig. 592 ; penis valve fig. 594.

Larvae massed together in irregular walnut-like gall in twig of Salix pentandra L. etc. and Populus. Britain: N. from Cheshire and Yorks., locally common. V-VI. N. and C. Rurope to E. Siberia
σ^{7} and $f(=$ pentandrae Retzius, medullarius Hartig) amerinae (L.)
3 (2) Sawsheath of q less swollen in dorsal aspect (not so broad as apical breadth of hind tibia) and more evenly tapering to the long medial flange, which is longer than the greatest breadth of the sheath; its lateral setae are almost straight and directed strongly backwards (fig. 598). σ not distinguished. . 4
Sawshenth of φ more swollen in dorsal aspect (so that its greatest breadth is more than apical breadth of hind tibia) and narrowing abruptly to the medial flange which is, at most, not longer than the greatest breadth of the sheath; its lateral setae are strongly curved and set strongly outwards (figs. 596-7). $\mathrm{S}^{\text {a }}$ not distinguished. $2.5-5 \mathrm{~mm}$. Saw fig. 593 ; penis valve fig. 595.

Extremely variable in size. Mastly black with outer orbits, hind angles of pronotum, apex of femora, tibiae and tarsi more or less yellow.
Larvo in galls affecting buds and bud-peduncles, mostly of Salix atrocinerew Brot., S. caprea L., S, cinerea L. and S. aurita L. but also in S. fragilis L., S. purpurea L., S. viminalis L., S. phylicifolia L., S. nigricans Sm. and S. triandra L. in summer and autumn. Probably the commonest of British sauflies. Among the larger specimens may be mingled representatives of the closely related E. laeta (Zaddach) (only doubtfully specifically distinct or British). E. laeta lives in a gall in the swollen leaf base ensheathing a bud of S . viminaiis L. and the adult \& is said to have a Longer flange on the sawsheath than N . mucronata but the range of variation of the stize of the flange in N . mucronata is as great as the supposed differences between these species. V-VII. Holaretic.

Almost identical morphologically with the following species.

593
594

595

muse.
600
an.

Figs. 592-3.-Saw of Euura: 592, amerinae: 593, mucronata,
Figs. 594-5.--Penis valve of Euura: 594, amerinat; 595, mucronata.
Figs. 596-600.-Sawsheath from above in Euera: 596-7, mucronata;
598, venusta; 599, atra; 600, amerinae.

Galls in leaf mid.rib of Salix fragilis L., alba L. and triandra L. elc, in summer and autumn. Galls widespread in Scotland and N. England; also recorded from Staffs., Herts. and Surrey, but adults have rarely been obtained. (\dagger Connald, 1009, Plant Galls of Great Britain : 234). V-VI. N. and C. Eигоре... q $_{\text {. }}$ testaceipes (Zaddach) Hind fermr (except at base) orbits and hind angle of pronotum mostly black. Saw similar to fig. 592.

Alrnost identical morphologically with the preceding species.
Galls in base of leaf-petiole of Salix aurita L., caprea L. cinerea L., and atrocinerea Brot. Galls common throughout Britain, though adults rarely obtained. (\dagger Traill, 1888, Trans. Perthsh. Soc, nat. Sci. 1:87). V-FI. N. and C. Europe. ? venusta (Zaddach)

Genus Pontania O. Costa.

A genus with about 70 described species (30 in Europe), of which at least 23 are now known to occur in Britain (only nine were recognized by Morice). These species fall into two distinct biological groups : those whose larvae live in rolled leaf-margins of Salix (and Populus also in N. America), and those whose larvae live inside galls (usually pea-, bean-, pear- or cigarshaped) on the leaf blades of Salix (and Populus in N. America). The galls of the gall-making group in Britain have been summarized recently by Benson, 1954, J. Soc. Brit. Ent. 4 : 206-11.

These two biological groups might be treated as different genera if some reliable morphological differences could be found to distinguish the males of each group, for the females segregate naturally into two groups correlated with these biological differences.

Key to Species of Pontania.
 Fernales.

1 Sawsheath in lateral view either emarginate beneath the apex or acute at the apex (figs, 613-8); ovipositor at most scarcely longer than hind femur; saw

Sawsheath in lateral view entire to the apex, where it is usually bluntly rounded, but if acute here, then the whole ovipositor is about one-fourth longer than the hind femur (figs. 619-21); saw figs. 542, 642-3. 11
2 (1) Soutellum only slightly convex and without coarse punctures, though it may be dull with a fine cariaceous surface. 4
Scutsllum strongly convex and dull with coriaceous surface between coarse punctures

$$
.3
$$

3 (2) Mainly yellow with the following parts black: upperside of base of antenna, patch covering frontal and post-ocellar araas of head, mesonotum except more or less for a fleck on the sides of the lateral lobes and sides of scutellum, metanotum, and basal 2 or 3 tergites medially, fleck covering mesnstemopleural line and apex of sawsheath. Sawsheath figs. 614 and 623; saw fig. 637. $\tilde{\mathrm{E}}-6 \mathrm{~mm}$.

Larva in rolled leaf-edges of Salix viminalis L. Throughout Britain. $V-V I$ and VII-VIII. N. Europe.

우 (= xanthogaster Forster, Cameron nec. Först.) piliserra (Thomson).

- Mainly black with the following parts brown : more or less face, outer orbits, pronotum, legs and underside of abdomen. Sawsheath of. fig. 624 ; saw cf. fig. 636.

Saw with basal bands strongly arched and oblique as in coriacea, which, with its dull inner orbits, etc., this species strongly resembles, but the hollows round the outside of the antennae are glabrous in scotaspis and pilose in coriacea.

Larva in rolled leaf-edge of Salix viminalis L. N. England and Scotland. C. and N. Europe...................................... \& scotaspis (Förster)

4 (2) Mostly black insects with pale colour confined to face, narrow hind orbits, edge of pronotum and sternites of abdomen. 5

- More profusely yellow-marked but very variable in colour ; head (except for ocellar and post-ocellar regions) and pronotum entirely yellow; mesopleura and underside of abdomen also more or less yellow marked. $4-5 \mathrm{~mm}$.

Sawsheath strongly pointed at apex and emarginate beneath the point (fig. 618). Saw of. fig. 638. Face dull with coriaceous surface sculpture but the hollows outside the antennae are glabrous. Stigma with venation, costa, underside and antennae and legs yellow.

Larva in rolled leaf-edge of Salix fragilis L., alba L. and triandra L. Only known from Lancs., Cambs, and Bucks. VI-VII. N. and O. Europe. $Q(=$ arcticus Thomson, Cameron nec. Thomson, in part) puella (C. G. Thomson)

Figs. 601-4.- Front tibial spurs in Pontrmia: 601, Leucapsis o: 60\%, leucapsis f; 603 , coriacea of: 604, coriacea 9
Figs. 605-7.-.Hind tibial spurs in Pontania: 605, crassipes 9 ;
606, leucosticta σ : 607, leucosticta 9 .
Figs. 608-12.-Head of Pontania from above: 608, twberculata; 609, destricta;
610, leucapsis ; 611, leucosticta; 612, viminalis.

Figs. 613-21.-Sawsheath in lateral view in Pontania: 613, anglica; 614, piliserra; 615, acutiserra; 616, coriacea; 617, purpureae; 618, puella; 619, proxima; 620, crassipes; 621, viminalis.

5 (4) Hind femur more or less infuseate at base above and below. Hind tibial spurs almost straight and less than half as long as basitarsus. Mesothorax boneath pilose but with a glabrous band in the sterno-pleural region...... . 6

- Hind femur entirely reddish-yellow. Hind tibial spurs clearly curved and about half as long as basitarsus (fig. 607). Mesothorax beneath pilose, without glabrous sterno-pleural band. $4 \cdot 5-5.5 \mathrm{~mm}$.

Ovipositor longer than the 4 basal hind tarsal segments. Hind basitarsus longer than 3 following tarsal segments. Face with hollow around antennae dull and pilose. Saw fig. 638.

Larva in rolled leaf-margins of Salix aurita L., caprea L., atrocinerea Brot. and cinerea L. Common throuphout Britain and Ireland. V-VIII. 2 broods. N. and C. Europe.............? ($=$ sharpi Cameron) leucosticta (Hartig)

624

Frgs. 622-35.--Sawsheath from above in Pontania: 622, leucapsis; 623, piliserre, 624, anglica; 625, purpureae; 626, dolichura; 627, tuberculata; 628, pedunculi; 629, algida; 630, crassipes; 631, proxima; 632, brudgmanií; 633, viminalis; 634, pustulator; 635, vesicatcr.

6 (5) Face with the hollow around the outside of the antennae shining and glabrous (ifigs. 609 and 610).
Face with the hollow outside the antennae dull with pilose patches (of. fig. 611)
.8
7 (6) Ridge surrounding the hollow outside the antennal sockets strongly defined and curving inwards behind the antennae to the sides of the frontal area and carinate all the way (fig. 609). Inner orbits outside this caring dull with coriaceous sculpture. Face, temples, pronotum, hind femur and tarsus mainly all black. Inner front tibial spur ecarcely half as long as basitarsus. Saw like fig. 638 but narrowing apically. $4.5-5.5 \mathrm{~mm}$.

Larva in rolled leaf-edge of Salix pentandra L. So far only recorded from England: W. Yorks; Scotland: Roxburgh and Stirling; Ireland: Leitrim.
VI. Subaretic and subalpine Europe to E. Siberia and Alaska, (\dagger Benson, 1940, Ent. mon. Mag. 76 : 209-12)
手 (= carinífrons Benson, apicifrons Malaise) destricta MacGillivray, syn. nov.
Ridge surrounding the hollow outside the antennal sockets rounded, not strongly carinate and breaking down behind the antennae before reaching the frontal aron (fig. 610). Inner orbits outside this ridge amooth and shining. Face, temples, pronotum, hind femur and tarsus often more or less marked with yellow or white. Inner front tibial spur at least about three-fourths as long as basitarsus (fig. 602). Sawsheath figs. 622 and of. 615. Saw of. fig. 638. $3.5-5 \mathrm{~mm}$.

Larva in rolled leaf-edges of Salix aurita L., caprea L. and atrocinerea Brot. Common throughout Britain and Ireland. V-VIII. 2 broods. C. and N. Europe to E. Siberia

8 (6) Sawsheath in lateral view very thin and acute, scarcely emarginate below (fig. 617); lateral hairs sparse and not longer than cerci; in dorsal view sheath very narrow (narrower at base than apex of hind tibia) and acuminate (fig. 625). Hind tarsus equals hind tibia. Basitarsus little more than 2 following tarsal segments together. $3.5-4.5 \mathrm{~mm}$. Saw fig. 640 .

Cerci not reaching bask further than half the length of the protruding portion of the sheath,

Larva lives on Salix purpurea L. in the folded edges of leaves which are later rolled and twisted throughout their length. Apparently common throughout England. V-VIII. ? 2 broods. (Benson, 1938, Ent. mon. Mag. 74 : 256-7). C. Europe. \ddagger purpureae (Cameron)
Snwsheath in lateral view strongly emarginate below apex, which is produced into a sharp point (figs. 613, 615-6); some lateral hairs longer than cerci ; in dorsal view sheath broad at base (as apex of hind tibia) and produced behind into a sharp point (fig. 624). Hind tarsus much shorter than hind tibia. Basitarsus more than 3 tarsal segments together. . .9
9 (8) Cerci in dorsal view reach back at least half as far as apex of sawsheath (ngs, 613,616 and 624). Saw with segmented bands oblique at apex (fig. 641) or erched at base (fig. 636).

- Cerci in dorsal view reach back less than helf as far as apex of sawsheath (fig. 615). Saw with 16 almost straight transverse segmental bands (fig. 639). $3 \cdot 5-4 \mathrm{~mm}$.

Scolland, Inner Hebrides, Isle of Rhunt, 1 Q, emerged miki. 1939 from goll of P. ? pedunculi Hartig, vii.1938 (J. W. Heslap-Harrison). New British record, Lapland and N. Russia................... ? acutiserra Lindqvist
10 (9) Frontal area of head conceve and shining in the concavity. Saw with about 20 segmental bands, the lateral margins of which are straight at the base and oblique at the apex (fig. 641). $3 \cdot 5-4 \cdot 5 \mathrm{~mm}$.

Larva in rolled margin of leaf of S . viminalis L. Probably common but only recorded from the following counties. Englond : Glos., Bucks, and Herts.; Ireland: Co, Cavan. V-VI. Outsite Britain only known fron E. Siberia ¢ ($=$ migrolineatus Cameron) anglica (Cameron)
Frontal area of head dull. Saw with about 16 segmental bends which are strongly arched at the base and straight at the apex (fig. 636). $3 \cdot 5-4 \cdot 5 \mathrm{~mm}$.

England: Bucks, and Yorks.; Scotland: Perths., Moray and Inverness. V-VII. (\dagger Benson, 1953, Ent. mon. Mag. $89: 150-1$). Scandinavia and Switzerland... 욱 corlacea (Bensnn)

11 (1) Stigma yellow or yellowish-white, at most a deeper yellow at apex, Hind tibial spurs clearly much shorter than apical breadth of tibia and curved at their apices (fig. 605). (Entirely northern and aretic-alpine gall-makers), . 12

- Either stigma piceous at apex or hind tibial spurs straight and at least almost as long as apical breadth of hind tibia. (Including southern and lowland species as well as northern; larvae free-feeding or in galls). 15
12 (11) Abdomen mostly yellow; larger species (over 5 mm . long). Hollows outside antennae pilose (cf. fig. 611). Mesothorax beneath pilose without a glabrous sterno-pleural line (cf. fig. 364).
(Larva in bean-shaped galls transected by leaf-blade of Solix)

Figs. 636-41.-Saw of Pontania: 636, coriacea; 637, piliserra; 638, leucosticta; 639, acutiserra; 640, purpureae; 641, anglica.

- Abdomen mostly black; smaller species ($2.5-5 \mathrm{~mm}$. long). Hollows outside antennae glabrous (of. fig. 612). Mesothorax beneath with a glabrous sternoploural line (cf. fig. 363).
(Larva in pea-shaped galls transected by leaf-blade of arctic Salix).... 14
13 (12) Sawsheath broad at base and tapering behind in dorsal aspect and with the lateral hairs almost straight to their apices (fig. 635). $5 \cdot 5-7 \mathrm{~mm}$.

Colour of head and thorax variable, more or less brown but head, except for face and narrow inner orbits and mesonotum, can be entirely black.

Larva in large, often redaish bean-shaped galls transected by leaf-blades of Salix purpurea L. N. England: Durham and Northumberland; Scotand: Inverness-shire, $n r$. Granlon. vi. 1946 (P. Harwaod) (\dagger Harrison, 1937, Entomologist 70 : 74). V-VI and VII-VLII. C. Europe

9 ($=$ nec. vesicator Bremi. Cameron ef. pustulator) vesicator (Bromi-Wolf)
Sawsheath more parallel-sided in dorsal aspect with the lateral hairs strongly curved at their apices (fig. 034). $5 \cdot 5-7 \mathrm{~mm}$.

Very similar to the preceding species but head and thorax generally more brown.

Larva in very similar bean-shaped galls but on Salix phylicifolia L. and nigricans Smith. Widely distributed in England: N. Pernines, in N. Yorks, Durham, Northumberland and Cumberland; also in Scolland: Perths. and Inverness. V-VI. N. Europe

우 ($=$ vesicator Bremi Cameron nec. Bremi) pustulator Forsius
14 (12) Longest lateral hairs on sides of sawsheath straighter and directed more backwards (fig. 629) so that the produced bases of those on one side would form an acute angle with those on the other side. Front lobes of mesonotum divided anteriorly by a carina.

Clypeus only slightly emarginate apically, to a depth of less than half length of clypeus. Mesopleura dull and coriaceous. 4.5 mm . Clypeus and hind fernur entirely dark. Hind tarsus shorter than hind tibia.

Larva in pec-shaped galle trarasected by the lecf blade of Salix herbacea L. Only known from 4, collected from catkins of Salix herbacea L., on Meall na Samhne, in the Breadalbane Mts. of Perthshire, vi.1932. (\dagger Wersson, 1935, Trans. ent Soc. Lond. 83 : 28 and 1941, Proc. R. ent. Soc. Lond. (B) 10:135). Lapland. ($=$ polaris Malaise Benson, 1935 nec. 1941) $\%$ algida (Benson)
Longest lateral hairs on sides of sawsheath in dorsal aspect strongly curved and directed more outwards (fig. 630), so that the produced bases of those on ons side and those on the other side would meet at about a right angle. Medial suture dividing front lobes of mesonotum obsolescent. Clypeus deeply excised in front to a depth of half length of clypeus. Mesopleura shining and scarcely coriaccous. $3-4.5 \mathrm{~mm}$.

Extremely variable in head sculpture. Hind tarsus varies from being about four-fifths to being about equal in length to hind tibia, Sawsheath laterally fig. 620. Saw fig. 642.

Larva in pea-shaped gall on one side of the leaf-blade, which transects it, and adjoining or including the mid-vein of Salix herbacea L.; similar galls on Salix arbuscula L. probably belong to the same species. Locally common in the arctic-alpine zones of the mountains in the Lake District, in Snowdonia, in the Grampians, on Ben Laoghal in Sutherland and on the Island of Rum. VI-VII. (See Berton, 1941, Proc. R. ent. Soc. Lond. (B) 10 : 132-3). Arctic and High Alpine, Europe
아 $=$ herbaceat Cameron, and ? arbusculae Benson) ${ }^{3}$ crassipes (C. G. Thomson)
15 (11) Stigma browner, piceous at apex.. 16
Stigma yellowish-white, either entirely or slightly deeper yollow at apex.... 22
${ }^{3}$ P. lapponica Malaise may also be British as indicated by the presence of what appear to be its characteristic galls on Salix lapponum L. samples in the Herbarium of the British Museum (Natural History) from Glen Callater, S. Aberdeen in 1887 and Glen Fallach (Corrie Ardrain), Perthshire in 1891. The galls, which are pea-shaped, aro attached to the mid-vein of the lear and project almost equally above and bencath the leaf-blade. Adults from Swedish Lapland would run to P. crassipes in this key except that the medial suture of the front lobe of the mesonotum is clearly marked (cf. Benson, 1954).

16 (15) Corci very short in dorsal aspect, reaching back less than half way to apex of sawsheath (figs. 631-2). Ovipositor about as long as hind tibia (fig. 619). Front wall of frontal area of head entire (cf. fig. 6ll).
(Larva in small coffee-bean gall transected by leaf-blade. Parthenogenetic species only rarely producing males. proximus group)........... 17

- Cerci longer, so that in dorsal aspect thoy reach back almost as far as tip of sawsheath and at least more than half way there (figs. 626, 628 and 033). Ovipositor often as much as one-fourth shorter than hind tibia (fig. 621). Front wall of frontal area of head often notched in the middle or channelled right through (fig. 612).
(Larva free-feeding, or in pea-shaped or irregular galls on the underside of the leaf, or in sausage-shaped galls on upperside of leaf. Species with normal intersexual reproduction)
17 (16) Hind basitarsus little longer than the 2 following tarsal segments together. Sawsheath longer than 2 hind basal tarsal sogments. Lateral hairs on sawsheath in dorsal aspect directed more outwards (fig. 631). Hind femur mostly pale.
- Hind basitarsus nearly as long as 3 following tarsal segments together. Sawsheath about as long as 2 basal hind tarsal segments. Lateral hairs on sawsheath in dorsal view directed more backwards (fig. 632). Hind femur mostly black.

Ovipositor about as long as hind tibia. $3-4.5 \mathrm{~mm}$.
Galls flat coffeebean shaped transected by leaf-blade but developed more above the leaf than below. Dark green and with a smooth surface more or less pubescent. Those on Salix caprea L. are larger and more ghabrous than those on S. atrocinerea or S. cinerea L. In the Inner and Outer Hebrides, Harrison (1942, Ent. mon. Mag. 78:90) records S. aurita L. also as a host-plant but suggests that this race is really speciftcally distinct; so far as I know no material has been bred or studied. In my garden at Boxmoor a small strain started on a single plant of S. phylicifolia 2 . that had been brought some years before from Cumberland; there was 1 gall in the autumn of 1942,3 in 1943 and 3 in 1944. These gatls scarcely projected at all below the leaf. Unfortunately no adults were secured for study. Very common throughout Britain and Ireland. (\dagger Benson, 1940, Ent. mon. Mag. 76:90wl). V-VI and VII-VIII. C, and N. Europe. . . (= capreae L. auctt. nec. L. in part) q bridgmaniil (Cameron)

Ovipositor longer than hind tibia. $3-4.5 \mathrm{~mm}$.
Galls coffee-bean shapad but deeper than broad and projecting about equally above and below the leaf-blade; covered with irregular ridges and protuberances. Or Salix fregilis L. the gall is usually bright rose-pinh above and pink or yellowish green below; on S_{*} alba L. the colour is usually less bright. For the biology of this and the following species see the classic paper by Carleton (1959, J. Linn, Soc. Lond. (Zool.) $40: 575-624$, pls. 20-1.) Very common throughout Britain. V-VI and VII-VIII. N. and C. Europe
中 (= capreae L. aucti, nec. L., in part, gallicola Stephens, Hopiocampa gallicola
Cameron and Eunera flavipes Cameron) proxima (Lepeletier)

- Ovipositor scarcely as long ns hind tibia. 34.4 mm .

Larva as in P. proxima. Gall as in P. proxima but on Salix triandra L. and dark red above, pale yellowish-green below and with the surface glabrous and quite smooth. For biology of this species see Carleton, 1939, lic. Very common throughout Britain and Ireland. (†Benson, 1941, Proc. R. ent. Soc. Lond. (B) $10: 131-2)$

P (=capreae L. auctt. nec. L. in part) triandrae Benson
19 (16) Sawsheath in dorsal view with its greatest breadth much less than ite length (figs. 626 and 633). Front wall of frontal area of head notehed in the middle or channelled through (fg, 612) or scaveely developed at all. .20

- Sawsheath very broad basally in dorsal aspect so that it appears about as broad as it is long (fig. 628). Front wall of frontal area conspicuously raised and entire ($c f$, fig. 611).

Hollows round outside of antemmae glabrous. $3 \cdot 5-4 \cdot 5 \mathrm{~mm}$.
The densely pubescent peashaped galls, about 7 mm . in diameter, are attached to the undersides of leaves, chiefly of Salix aurita L. but somethmes of S. caprea L., atrocinerea Brot, or S. cinerea L. Common throughout Aritain
to the Outer Hebrides; also in Ireland. IV-VI and VII-VIII. N, and C. Europe E. to Kamtchatka

ㅇ (= baccarum Cameron, bellus Zaddach) pedunculi (Hartig)
20 (19) Frontal area of head defined laterally by continuous sutures, with a conceve basin in the middle bordered by a pronounced front wall which is, however, notched or channolled right through in the middle (fig. 612). Hollows round outside of antennae glabrous and shining. Hind femur yellow. Sawsheath fig. 633
.21

- Frontal area of head scarcely raised above the level of the orbits and not defined by continuous autures, with the frontal basin very shallow and not connected in front by channel or notch with the circular median fovea. Hollows round outside of antonnae pilose and dull. Hind femur mainly black. Sawsheath fig. 626 .

Small species $2.5-4.5 \mathrm{~mm}$. Stigma white at the base with only the extreme apex or at most apical half piceous. Saw fig. 643.

The galls are quite distinct and unique; they are sausage-shaped (2 to 3 by 5 to 13 mm .) and often paired one each side of the mid-rib of the leaf; they are usually dark purple or red above and green below and project only from the upper surface of the leaf. They can be found in V-VI but are vacated before the middle or end of VII and are thus very early for a mountain species. In Britain mostly on Salix nigricans Sm. and phylicifolia L. but also locally on S. arbuscula L., S. myrsinites L., S. lanata L. and S. lapponum L. (In C. Europe also on S. purpurea L.) Locally common from the Pennines northwards, chiefy at alditudes over 1000 ft . IV-V. N. and Alpine Europe, E. to Kantchatka, often at the sed coast, and N. America
$\oint(=$ ischnocerus Thomson, Cameron, nec. Thomson, $=$ femoralis Cameron, $=$ robbinsi Benson) dolichura (C. G. Thomson)
21 (20) Stigme conspicuously white for about basal third and C also pale. Hind tarsus shorter than tibia ($1: 11$) and searcely infuscate. Profusely marked with brown especially on hind orbits, antennae, pronotum and abdomen behind and below. $4-5 \mathrm{~mm}$.

Larwa in pubescent moslly greenish-yellow irreqular pea-shaped pyriform, bi- or tricuspid galls attached to the mid-veins on the undersides of leaves of Salix purpurea L. and nigricans Sm. in N. England: Yorks., Durham and Northumberland; and Scotland: Dumfries, Roaburghshire, Perths. and Inverness. VI, ? single-brooded. N. and subalpine Europe. These galls are very similar to those of P . phylicifoliae ($q . v$) but are larger (with longest axis often over 10 mm .) and even more irregular in form. (\dagger Benson, 1940, Ent. mon. Mag. 76:91-94). N. and O. Europe. $\%$ harrisoni Benson

- Stigma but little paler at base than apex and costa mostly piceous. Hind tarsus about as long as tibia and in contrast to it infuscate. Less profusely marked with brown. $4-5.5 \mathrm{~mm}$.

Larvae live in glabrous, red-flushed more regular oval or pea-shaped galls (of diameter about 5-8 mm.) covered with warts and attached to the mid.vein on the underside of the leaves chiefly of Salix purpurea L. but occasionally also of S. fragilis L. and S. viminalis L. Very common throughout Britain and Ireland. V-VI and VII-VIII. 2 broods. Throughout most of Europe
\% ($=$ salicis-cinercae Retzius, vollenhoveni Cameron, interstitialis Cameron) viminalis (L.)
22 (15) Head above covered with numerous tubercles and the surface eoriaceous between (fig. 608). Frontal area not clearly defined. Mesonotum and mesopleura dull with coriaceous surface. Sawsheath in dorsal view narrowed behind to a sharp point (fig. 627). 4-4.5 mm.

Hind basitarsus as long as 3 following tarsal segments together.
Recorded from England: Malham Tarn, W. Yorks., 1955 (R. B. B.); Wales: Presteigne, Radnor, 1953 (R.B. B.); Ireland: Lough Mentis and Farrinseer, Co. Cavan, 1944 (R. C. Faris) ; Scotland: Culbin Sands, near Forres, Moray, 1952 (R. B. B.). (\dagger Benson, 1953 , Ent. mon Mag. 89 : 151-2). N. Sweden and Finland. q tuberculata (Benson)

Head never covered with tubercles though the surface may be dull; frontal basirt more clearly defined. Mesopleura and usually mesonotum shining without coriaceous sculpture 23

23 (22) Antennal grooves (round outer edge of antennal sockets) glabrous and shining. Antenna, shorter than costa. Head in front view broader than high. Front wall of frontal basin well developed but clearly notched or chamelled right through. Gall makers. 24
Antennal grooves pilose and dull. Antenna longer than costa. Head in front view higher than broad. Front wall of frontal basin entire or the basin is scarcely developed at all. Saw fig. 542.

8 (see Mematus reticulatus Holmgren complex, p. 211-3)
24 (23) Stigma with apex darker than base. Head mostly yellow (exeept for black spot covering frontal area and antennal furrows). Hind tarsus about as long as hind tibie. 4-5 mm.

Larva in yellowtsh-green, irregular pea-shaped or purse-shaped pyriform galls attached to the midrrib on the umderside of the leaves of Salix phylicifolia L. and nigricans Sm. The surface of the galls is only slightly pubescent and the long axis, which is usually less than 10 mm ., is bent sideways outwards from the med-rib (cf. P. harrisoni above). Local from the Pennines northwards. (\dagger Harrison, 1926, Vasculum 12:116-7). VI. N. Europe.

ㅇ ($=$ phylicifoliae Forsius) arcticornis Konow
Stigma with dise entirely yellowish-white and head mostly black (except for parts of the face and the outer ard hind orbits). Hind tarsus shorver than tibia ($0.8: 1.0$), $\quad 4-5 \mathrm{~mm}$.

Larva in irregular oval or pea-shaped galls (ander 10 mm . diameter) yellow and red flushed or deep red attached to the underside of the leaf near the midvein of Salix repens L. Locally common from Lancs. (Frestifeld), northwards throughout Sootland and the Western IsLes and in Co. Mayo in Ireland. V-VI. Single brooded. C. and N. Europe. In some of the Western Isles the galls are called "cranberries" and the creeping willow the "cranberry" (Harrison, 1939, Ent. mon. Mag. 75:63) ; and Comeron even recorded the host of this species as Vaccinium vitis-ideae L.
$P\left(=\right.$ vacciniellus Cameron) ${ }^{4}$ collactanea (Förster)

Key to Species of Pontanta.
 Males.

1 Antennal grooves (round outer edge of antennal sockets) glabrous and shining (figs. 609-10, and 612).
Antennal grooves pilose and dull (figs. 608 and 611) 13
2 (1) Mesoscutellum strongly convex and dall with coriaceous sculptare between coarse punctures. Head with pale orbits and face
Scutellum at most only slightly convex and without coarse punctures. 4
3 (2) Underthorax yellow oxcept for a black fleck on the sterno-pleural line. Abdomen yellow except for the 2 or 3 basal tergites medially. Penis valve fig. 648. $4 \cdot 5-5 \cdot$ aั mm. o 7 piliserra (Thomson)

- Underthorax black except for a more or less pale spot in the front of the mesopleura. Abdomen black above on every segment medially and on the 2 or 3 basal ones entirely. Penis valve fig. 650, $4-5 \mathrm{~mm} . \boldsymbol{a}^{2}$ scotaspis (Forster)
4 (2) Head mainly black. If face and orbits marked with pale colour, then antenna shorter than $\mathrm{C}+$ stigma in length .5
- Head mainly yellow above and below. Antennd very long-longer than $\mathrm{C}+$ stigma. Penis valve fig. $649 \sigma^{*}$ puella (C. G. Thomson)
5 (4) Hind femur more or less infuscate. Labrum and more or less clypeus white. Ridge between eyes and antenmal sockets earinate in dorsal view figs. 609-10)
- Hind femur pale or labrum not white (yellow or infuscate). Ridge between eyes and antennal sockets not carinate in dorsal view (fig. 612)
${ }^{4}$ P. samolad Malaise may also be British as indicated by the presence of what appear to be its characteristic galls on Salix lapponum L. samples in the Herbarium of the British Museum (Natural Fistory) from Creagendale in Aberdeen in 1889, and at Glen Falloch (Corvie Ardrain), Meal Garbh, and Ben Lawers, in Perthshire, 1891-4. The galls, which are pea-shaped, are attached to the mid.vein near the base of the underside of the leaf. Adults from Swedish Lapland would mun to P. collactanea in this key except that the hind tarsus is about the same length as the hind tibia and the inner orbits in front are culler (cf. Benson, 1954).

6 (5) Ridge between eyes and antennal sockets strongly defined and curving inwards behind the antennae to the sides of the frontal area and carinate all the way (fig. 609). Inner front tibial spur about half as long as basitarsus (cf fig. 603). Face, temples, pronotum, hind femur and tarsus mostly all black.

Ridge between eyes and antennal sockets rounded, less strongly carinate and braaks down behind antennae before reaching the frontal area (fig. 610). Inner front tibial spur nearly two thirds as long as basitaraus (fig. 601). Face, temples, pronotum, hind femur and tarsus often more or less marked with yellow. 35-5 mm............................... . lencapsis (Tischbein)

642
crass.

643

Figs. 642-3.-Saw of Pontania: 642, crassipes; 643, dolichura. Figs. 644-6.-Penis valye of Pontania: 644, tuberculata; 645, triandrae; 646, erassipes.

7 (5) Hind trochenter and fomur (except perhaps at oxtreme base) yellow and frontal area concave in the middle and with a lateral suture outside hind ocellus. . . 8 Hind femur with at least basal half and often also hind trochanter infuscate, or frontal area not concave in the middle or lateral suture absent.... 10
8 (7) Face with at least inner orbits below level of antennal sockets more or less black \qquad Face below level of antennal sockets together with the broad outer and hind and the narrow inner orbits continuously yellow. $4-5 \mathrm{~mm}$.
δ^{R} arcticornis Konow

9 (8) Hind basitarsus and base of hypopygium piceous, $4-5 \cdot 5 \mathrm{~mm} . . \mathrm{d}^{2}$ viminalis (L.)

- Hind basitarsus and hypopygium testaceous. $4-5.5 \mathrm{~mm}$.

10 (7) Front wall of frontal area notched or channelled by a groove connecting median fovea with frontal basin (fig. 612) or hind tibial spurs not longer that apical breadth of hind tibia. 11

- Front wall of frontal area entire (fig. 611). Hind tibial spurs longer than apical breadth of hind tibia. 12

Figs. 647-51.-Penis valve of Pontania: 647, purpureas; 648, piliserra; 649, puella; 650, scotaspis: 651, leucosticta.

1 (10) Stigena and hypopygium mostly piceous. Tibial spurs longer than apical breadth of hind tibia. $4-5 \mathrm{~mm} \sigma^{\star}$ collactanea (Förster)

- Stigma and usually hypopygium mostly yellow. Tibial spurs not as long as apical breadth of hind tibia (fig. 605). Penis valvo fig. 646. $2 \cdot 5-5 \mathrm{~mm}$. g algida Benson and erassipes (Thomson)
I2 (10) Frontal area with well-defined surrounding wall and with lateral suture adjoining each hind ocellus. Males as common as femnles. $3 \cdot 5-5.5 \mathrm{~mm}$.
- Frontal area without clear surrounding walls and without a lateral sutare. Very rare males of normally parthenogenetic species. P. bridgmanii Cameron has not been seen and only single bred specimens of P. triandrae Benson and of P. proxima Lepeletier have been available for study. (Penis valve of triandrae fig. 645).
13 (1) Hind tibial spurs almost straight or not longer than apical breadth of hind tibia. Hypopygium not longer than femur without second trochanter or hind legs often not entirely red. 14 Hind tibiai spurs strongly curved and much longer than apical breadth of hind tibia (figs. 606). Hypopygium enlarged and as long as hind femur plus second trochanter. Hind legs mostly red. Stigma white with only the apex infuscate. Penis valve fig. 65̃l. $4.5-5.5 \mathrm{~mm}, \ldots \mathrm{~J}^{\pi}$ leucosticta (Hartig)
Hind femur mostly infuscate and hypopygium piceous. Mostly under 5 mm 15
Hind femur and hypopygium mostly testaceous. Often over $5 \mathrm{~mm}18$
15 (14) Head without definite carina surrounding frontal area. Stigma piceous at least at apex or round apical margin; © piceous too..................... 16
Head with definite carina surrounding frontal area. Stigma brown, not darker at apex ; C also brown...... Ot $^{\text {A }}$ (see Nematus reticulatus Holmgren complex, p. 211-213).
16 (15) Hypopygium clearly longer than hind fenour plus second trochanter, piceous 3. $5-4.5 \mathrm{~mm}$.
.19
Hypopygium scarcely as long as hind femur without eccond trochanter.... 17
17 (16) Head above covered with minute warts. Lowland leaf-roller. Penis valve

Head above with fine coriaceous sculpture. Subarctic gall maker. 2.5-4.5 mm, .. ot $_{\text {t }}$ dolichura (Thomson)
18 (14) Species under 5 mm . Head with frontal area not clearly defined and head coriaceous between numerous large tubercles (fig. 608). Mosonotum and mesopleura dull with coriaceous sculpture. Penis valve fig. 644
- Species over 5 mm . long. Head with clearly defined frontal basin and dull with coriacoous sculpture but with no tubercles. Mesonotum shining between round punctures. Mesopleura shining without surface sculpture
${ }^{7}$ pustulator Forsius and vesicator (Bremi)
19 (16) Frontal areas of head concave and shining in the concavity . σ^{2} anglica (Cameron)
${ }_{0}{ }^{3}$ coriacea (Benson) (and ? acutiserra Lindquist)

Genus Croesus Leach.

A small genus of oniy nine known species of which the four European ones all occur in Britain. The species are large, $7-11 \mathrm{~mm}$. long (see fig. 652) with at least four middle segments of the abdomen red (except in a melanio form of C. septentrionalis). On the hind legs the femur is reddish-brown tipped with black in the males and more or less widely infuscate from the apex in the females; the hind tibia is black on the apical portion and white on the basal, and the hind tarsus is entirely black or piceons. The wings are hyaline, often with an infuscate band under the piceous stigma. Saw, fig. 655. Penis valves figs. $653-\mathbf{4}$.

Key to Species of Croesus.

Fig. 652.-Croesus septentrionalis.
Fics. 653-4.-Penis valve of Croesus : 653, varus ; 654, septentrionalis. Fig. 655.-Saw of Croesus septentrionalis.

2 (1) Hind acelli further from hind margin of head than from each other ($1 \cdot 2-1 \cdot 3: 1 \cdot 0$). $8-10 \mathrm{~mm}$, Saw fig. 655 . Penis valve fig. 654.

Larvae gregarious on various trees and shrubs, mainly Alnus and Betula, but also on Acer, Carpinus, Corylus, Fraxinus, Populus, Salix and Sorbus. Common throughout British Isles. The Irish race contains a proportion of specimens with an entively black abdomen (var. stephensii Newman); this form is recessive to the red-banded form (Perkins, 1929, Ent. mon. Mag. 68: 18). $V-V I$ and VII-IX. Europe including Iberian Peninsula, Asia Minor and Caucasus. 0^{*} and q septentrionalis (L.)

- Hind ocelli about as far from hind margin of head as from each other (1.0-1.1:1.0). $7.5-10 \mathrm{~mm}$.
Larvae gregarious on Betula. Widely distributed in England but less common than the preceding; also Scotland: Lanark and Raasay and S. Uist of the Western Isles; and Ireland: Cavan. V-VI and VII-IX. N. and C. Europe to Caucasus. ${ }^{*}$ and q latipes (Villaret)

3 (1) Fore wings without an infuscate band under the stigma. Labrum, edge of clypeus, and tegula yellowish-white. Femora mainly yellow, infuscate only at base and extreme apex. Middle of mesopleura above with shining interspaces between the punctures. Sawsheath of $\%$ about as broad as base of hind tibia in dorsal aspect. $7.5-8 \mathrm{~mm}$. Penis valve fig. 653 .

Larva on Alnus. Throughou Britain: also from Treland: Leitrim. $V-V Y$ and VII-IX. C. and N. Europe, Iberian Peninsula, Siberia and N. America. δ very rare.................... δ^{π} and $\frac{q}{9}$ varus (Villaret)

- Fore wings with an infuscate band under the stigma. Labrum pale brown; olypeus and tegula picoous, Femora mainly black. Middle of mesopleura dull with fine surface sculpture between the punctures. Sawsheath much narrower than base of hind tibia in dorsal aspect. $\quad 7-8 \mathrm{~mm}$.

Larva on Carpinus and Corylus. This species has so far been fonnd only on a few occastons at Apsley Guise and Clophill, in Bedfordshire (\dagger Chambers, 1950, Ent. mon. Mag. 86: 85-86). V-VI. C. Europe. ©
*? brischkei (Zaddach)

Genus Nematus Panzer.

$$
\text { (}=\text { Holcocneme, Pteronidea) }
$$

More than 120 species of Nematus are now known from the world, and 39 of these are here recognized as British, N. frenalis and N. ponojense for the first time. The N. reticulatus complex has already been included in the keys to Amauronematus and Pontania as it is easily mistaken as belonging to one or other of these genera. The species pattern in this complex is also still uncertain and there may prove ultimately to be more than two British species or only one.

Key to Species of Nematus.

Females.

1 Arctic-alpine spocies at most 5.5 mm . long, with pale stigma and small eyes (fig. 660) (so that in lateral view the length of the middle of the eye is only about one and a half times the length of the head behind the eye): hind tibial spurs not longer than apex of tibia.

- Lowland species more than 6 mm . long, or with larger eyes (fig. 661) (so that in lateral view the length of the middle of the eye is at loast twice as long as the length of the head behind the eye); stigma sometimes dark and spurs often longer.
2 (1) Antenna and head, except labrum, entirely black, as also is most of the body except the cerci, tibige and tarsi. Sawsheath narrow and almost parallelsided with straight lateral setae (fig. 079). $4-5 \mathrm{~mm}$.

Only known from artic-alpine zone of the Grampian mountains in Perth. and Inverness. VI. (\dagger Benson, 1935, Trans. R. ent. Soc. Lond. 83:30). Also Finland. ? ? nubium (Benson)

- Antenna and head mostly reddish-yellow, also usually body on at least mostiof thorax and underside of abdomen. Sawsheath tapering behind and with curved setae (fig. 680). $4-5.5 \mathrm{~mm}$. Saw fig. 542. Penis valve fig. 575.

Figs. 656-9.-Clypeus of Nematus; 656, olfaciens; 657, ribesiz; 658, frenalis: 659, bergmanni.
Fics. 660-1.-Lateral view of head to show compound eye in Nematus: 660, reticulatus; 661, fuscomaculatus.
Figs. 662-4.-Head from above to show postocellar region in Nematus: 662, polyspilus; 663, bergmanni; 664, frenalis.

Larva or Vaccinium. In arctic-alpine zone of the Grampian mountains (Perth., Inverness. and Angus) and probably elsewhere in Britain. In Ireland a large form with black antennae and mesonotum has been found by R. C. Furis at Furrinseer and Farnham in. Co. Cavan in lowland country but this may prove to be another species. V-VI. (†Benson, 1935, Trans. R. ent. Soc. Lond, 83 : 29-30). Arctic alpine circumpolar
\uparrow (forsiusi Enslin, alsius Benson) reticulatus Holmgren

Fies. 665-6.-Apex of costa in fore wing of Nematus : 665, miliaris; 666, ferrugineus.
Fies. 667-8.-Portion of fore wing to show form of M in Nematus : 667, ponojense; 668, frenalis,
Frc, 669.-Stigma of Nematus myosotidis.
Figs. 670-3.-Hind tibial spurs in Nematus: 670, leucotrachus; 671, ribesit;
672, coeruleocarpus; 673, crassus.

3 (I) Abdomen never black above with a red girdle and often stoekier or smaller, and often with shining thorax. 4

- Very elongate species with torpedo-shaped body, red-girdled, 8-1I mma. long. Mesonotum and mesopleura dull with heavy punctures and surface sculpture. Saw fig. 707.

Larea socially on Crataegus and Prunus spinosus L. Throughout Britain, commoner in South. IV-WI. Europe to Spain and Caucasus 오 (Holcocneme hucida (Panzer)) Iucidus (Penzer)

Figs. 674-7.-Sawsheath in lateraI view in Nematus: 674, oligospilus ; 675, vivitis; 676, jugicola; 677, umbraíus.

4 (3) Abdomen mainly orange-yellow (more or less infuscate basally above); head and mesonotum mainly black. Hind tibia yellow except sometimes at extreme apex. Antenna often entirely black. 5

- Abdomen variously coloured, sometimes green fading to straw yellow; if mainly orange-yellow, then either so also are head and mesonotum above mainly yellow, or hind tibia mainly black. Antennae (except in incompletus) at least pale beneath. .

15
5 (4) Sawsheath in dorsal view broedly rounded behind and often subparallel-sided (figs. 683-5 and 687). Stigmn of fore wing often mainly dark. 6
Sawsheath in dorsal view acute behind, either subtriangular or very narrow in general shape (cf. figs. 679, 686). Stigma often pale at least in middle. . . 11
6 (5) Sawsheath in lateral view slightly emarginate behind with dorsal apox acutely angled (cf. fig. 676), Larger species, $6 \cdot 5-10 \mathrm{~mm}$

- Sawsheath in lateral view, rounded behind and not sharply angled at apex
 black except at most for narrow margins. Sawsheath fig. 684; saw fig. 716. 8-10 mm .

Larva on Salix alba L., S. fragilia L., etc. Locally common England to Berwickehire, and Ireland. V-VI and VII-IX. N. and O. Europe to Caucasus. ? salicis (L.)

- C and most of Sc (except margins) yellow. Scutellum yellow each side of the black middla line. Sawsheath fig. 687 ; saw fig. $715 . \quad 6.5-8 \mathrm{~mm}$.

Larva on Salix and sometimes Betula, Corylus, Populus or UTmus. Locat throughout Britain and Ireland reaching N. Ebudes. V-VI and VII-IX, C. and N. Europe
melanocephalus Hartig

Figs. 678-88.-Sawsheath from above in Nematus: 678, spiracae; 679, mubium, 680, reticulatus; 681, flavescens; 682, stichi; 683, ribesiv; 684, salicis; 685, umbratus; 686, pavidus; 687, melanocephalus; 688, lucidus.

8 (6) C pale on at least basal two-thirds. Ovipositor much longer than 2 basal hind tarsal segments (figs. 677 and 685). Saw with prominent marginal teeth (fig. 708). Head with yellow tomporal spots absent or very faint. Antennae entirely black. 5.5 to 7.5 mm .

Mesonotum often with the lobes yellow at the margins. Abdomen usually entirely yellow.

Larva on Betnla, also Ulmus, Corylus and Amus. Local and scarce throughout Britain. V-VI and VII-IX. N. Europe

우 $(=$ similis Forsius, collinus Cameron) umbratus Thomson.

- C infuscate oxcept at extreme base. Ovipositor scarcely as long as 2 basal hind tarsal segmonts together (fig. 674). Saw of very simple pattern without
distinct marginal teeth (figs. 699-701). Head black with usually a yellow mark in the upper orbits. Antenna usually pale beneath. (On Ribes).... 9 9 (8) Clypeus excised in front to a depth of less than half total depth of clypeus (fig. 657). Either antennae pale beneath or inner hind tibial spur about half as long as metatarsus (fig. 670). (Larva on Ribes spp. excluding nigrum). 10
Clypeus excised in front to a depth of at least half total depth of clypeus (fig. 656). Antenna piceous beneath. Inner hind tibial spur clearly less than half metatarsus (cf. fig. 671). Saw fig. 699.

Abdomen except for first and more or less second tergites mainly yellow. $5.5-6.5 \mathrm{~mm}$.
Larva on Ribes spp. including nigrum. Found in 1952 in Angus by Dr. Ann Sanderson and in Glos. by R. O. Twynn. Now apparently widespread throughout Britain. (\dagger Benson, 1953, Ent. mon. Mag. $89: 60-63$). Not known for certain outside Britain. olfaciens Benson
9) Scutellum, mesonotum and abdomen almost entirely yellow. Antenna always pale beneath. Inner hind tibial spur clearly less than half length of metatarsus (fig. 671). Saw fig. $700.6-7 \mathrm{~mm}$.

Larva well-known pest of Ribes rubrum L., uva-crispa L. and alpinum L. Common throughout Britain to Outer Hebrides and Ireland. IV-IX (2-3 broods). All Europe to Cancasus. Introduced into N. America.... 오 ribesii (Scopoli) Metonotum and abdomen with at least 2 basal tergites and often entire upper surface black. Antenna piceous below. Inner hind tibial spur about half as long as metatersus (fig. 670). Saw fig. 701. 6-7 mm.

Larva on Ribes, chiefly uva-crispa L. Throughout Britain but seldom common. $I V-V(1$ brood $)$. C. and N. Europe

Q (consobrinus Vollenhoven) leucotrochus Hartig Ovipositor very short (fig. 676) (scarcely longer than hind basitaraus and much shorter than 2 basal tarsal segments) and in dorsal aspect narrow (not more than twice breadth of a cercus), subparallel-sided and reaching back further than the apices of the short cerci (fig. 686). Sawsheath abbreviated (shorter than basal plate) and saw with only very fine ventral teeth (figs. 702 and 705). Stigma of fore wing with margin sordid at lenst at apex, Inner hind tibial spur more than half length of basitarsus ($c f$. fig. 673) 12 Ovipositor longer than 2 basal hind tarsal segments (cf. fig. 677) and in dorsal aspect more than twice breadth of a cercus, tapering behind where it is rounded and not reaching back much further than the apices of the long cerci. Sawsheath longer than basal plate and saw with conspicuous ventral teeth (figs. 713-4 and 717). Stigma may be with sordid margins. Inner hind tibial spur at most only about half basitarsus (cf. figs. 670-1) 13
12 (11) Front wall of frontal area notched. Abdornen all yellow except for a small black fleck each side of apieal excision of first tergite and sometimes a fleck in middle of second and third. Stigma with margins sordid all round and much more than twice as long as wide. Antenna almost entirely black. Saw fig. 705. Sawsheath fig. 6866. 6-7 mm.

Larva on Salix, Populus and also Alrus glatinosa (L.) Gaertn. Common throughout Britain to the Outer Hebrides; also in Ireland. IV-VI and VII-IX. All Europe.................................... q pavidus Lepeletier Front wall of frontal area entire and abdomen with first and second tergites almost entirely black and a medial row of black flecks on most of the following tergites. Stigma with only apical margin sordid and only about twice as long as wide (cf. fig. 669). Anterna with flagellum entirely yellow. Saw fig. 702.6 .7 mm .

Larva on Salix aurita L. etc, England: Yorks., Teesdale, 1 Q, v. 1939 (R. B. B.). Scolland: Inverness, Loch Morlich, I ㅇ, vi. 1934 (R. B. B.) and Moray, Culbin Sands, near Forres, ll.vii. 1904 (J. J.F. X. King). (\dagger Benson, 1934, Ent. mon. Mag. 70:14). Two broods on the Continent, not common. N, and C. Europe. jugicola C. G. Thomson
13 (11) Abdomen normal with a medial row of black flecks down its whole length, but the extent of black very variable, sometimes covering entire dorsal surface of abdomen and sometimes entirely absent. Stigma only twice as wide as long (fig. 669). Antenna entirely black. $6-7 \mathrm{~mm}$.
(cf. incompletus (couplet, 30) which is rather similar to this species but its pale body colour is green in life fading to straw and it has the upper half of the inner orbits with a pale line; in this species only tho upper corner of the orbit is pale). Saw fig. 717.

Larva on Onobrychis vieciifolia Scop. and Trifolium spp. Common throughout Britain and Ireland. V-VILI (2 or move broods), Common throughout Europe to Caucasus and W. Siberia. myosotidis Fallén

Figs. 689-98.-Sawsheath from above in Nematus: 689, crassus; 690, nigricomis; 691, fảhrabì; 692, leionotus; 693, incompletus; 694, ferrugineus; 695, miliaris; 696, brevivalvis: 697, viridis; 698, oligospilus.

- Abdomen yellow with at most the first and seeond tergites mainly black and the third and fourth with a small medial spot. Stigma more then twice as long as wide (cf. ig. 666). Anterma conspicuously pale beneath...... 14
14 (I3) Wings slightly infuecate and C in fore wing much paler than M, which is piceous. Abdomen with first and second tergites mainly black and third and often the fourth with a medial black spot. Inner hind tibial spur about half length of basitarsus. Scutellum scarcely convex and without coarse punctures. Saw fig. 714. $6-7 \mathrm{~mm}$.

Larva unknown. In Britain known only from the feu specimens collected
by Cameron in Clydesdale and a feav found at Malham Tarn, Yorke., in 1955. VI. Rare in C. and N. Europe to Caucasus.

ㄱ (= similator Forster Morice nec Förster) $\%$ monticola Thomson

- Wings subhyaline and C scarcely paler than M. Abdomen with at most a small black fleck each side of the excision of the first tergite. Inner hind tibial spur less than' half basitaraus. Scutellum clearly convex, almost hemispherical, with coarse shallow punctures. Saw fig. 713. $5-6.5 \mathrm{~mm}$.

Larve on underside of rolled leaves of Salix repens L., viminalis L. etc. V-VI and VII-VIII. Throughout Britain, locally common, C. and N, Europe... q biparitus Lepeletier
15 (4) Head, mesonotum and often abdomen mainly brown or orange-yellow (but usually with black flecks and abdomen more or less black above). Postocellar area of hoad often without black flecks.
.16

- Head, mesonotum and abdomen either mainly black, or with ground colour green fading to straw, more or less marked with black. Postocellar region of head black or at least black -flecked. .24
16 (15) C of fore wing not much swollen apically (fig. 665) (so that it is not wider than intercostal area at point of origin of vein $\mathrm{Rs}+\mathrm{M}$). Antenna as long as or longer than $\mathrm{C}+$ stigma of fore wing. .17
- C of fore wing strongly swollen apically (fig. 666) (so that it is clearly wider than intercostal area at point of origin of vein $\mathrm{Rs}+\mathrm{M}$). Antenna not as long as $\mathrm{C}+$ stigma of fore wing.

21
17 (16) Smaller species ($5.5-8 \mathrm{~mm}$.) with sawsheath subtriangular in dorsal view ($\mathrm{figs} .68 \mathrm{I}-2$).
. 18
Larger species ($7.5-9 \mathrm{~mm}$.) with sawsheath in dorsal view expanding towards the apex where it is bluntly rounded and not extending as far back as the tips of the cerci (fig. 695)

20
18 (17) Head without a black spot between the ocelli Antenna not noticeably infuscate above. Depressed parts of metanotum in front of cenchri pale or abdomen marked with black above. Cerci in dorsal aspact reach back more than half way to apex of sawsheath (fig. 681).

19
Head with a black spot between the ocelli. Antenna black above. Depressed parts of metanotum in front of cenchri black. Abdomen entirely yellow. Cerci in dorsal aspect reaching back less than half as far as apex of sawsheath (fig. 682). Saw fig. $720 . \quad 5 \cdot 5-6.5 \mathrm{~mm}$.

Larva on Salix atrocinerea Brot. etc. Discovered in Ireland: Devil's Glen, Wicklow, in 1927 by A. W. Stelfox. Also in Scotland: Lanark. V-VI and VII-VIII. (\dagger Benson, 1933, Stylops, 2:258-9). Finland, Latwia and Spain........................ ㅇ․ (= fuscarima Benson) stichí (Enslin)
19 (18) Larger species ($7.5-8 \mathrm{~mm}$.). Depressed parts of metanotum as well as metascutum and 2 or 3 basal abdominal tergites marked with black. Front wall of frontal area notched in the middle.

Larva on Betula. Only 2 \& known: the type from Scotland: Bishopton, Renfrew, and anolher from N. Wales: Bangor, Caernarvon (J.J.F. X. King).
 Smaller species $5.5-7 \mathrm{~mm}$. Metanoturn entirely yellow and abdomen with or without a medial row of dorsal black spots. Front marginal wall of frontal area entire. Saw fig. 719.

Larva on Salix atrocinerea Brot, viminalis L. etc. In England: Devon, Dorset, Bucks., Herts., Worcester, Warwick, Chester, Lancs. ; Scotland: Ross and Cromarty and Invervess. V-VI and VII-VIII. N. and C. Europe.? (stichi Enslin auctt. nec. Enslin) flavescens Stephens
20 (17) Apex of hind tibia and all tarsus on inner side infuscate. Hind basitarsus slenderer, clearly more than four times as long as apical breadth.
(The saw of this species is not yet distinguished from that of N. miliaris (Panz.) and is quite different, therefore, from Zirngiebl's figure (1941 , Mitt. Dtsch. ent. Ges. $10: 41$, fig. 4) which must be abnormal or belong to some other speeies).

Larva soltury edge-feader on Fagus sylvatica L. Widespread S. England to Perthshire ; conmonest in S.E. Europe. V-VI and VII-VIII fagi Zadd.
Apex of hind tibia and tarsus not or searcely infuscate. Hind basitarsus stouter, not more than four times longer than apical breadth. Saw fig. 724.

Larva gregarious on Salix spp. or sometimes Populus. Throughout Britain and TivLand. V-VI and VII-VIII. All Europe to Asia Minor and to E. Siberia
(croceus Fallén, Cameron, nec. miliaris Panzer, Cameron) \ddagger miliaris Panzer

Flgs, 699-711,-Saw of Nematus: 699, olfaciens; 700, ribesii; 701, Ieucotrochus; 702, jugicola; 703, hypoxanthus; 704, spiraeae; 705, pavidus; 706, melanaspis; 707, lucidus; 708, urboratus; 709, fuscomaculatus; 710, coeruleocarpus; 711, nigricornis.

21 (16) Saweheath narrow and tapering towards apex, where it is subtruncate in dorsal aspect (fig. 694). Basal tergites mainly brown. Scutellum entirely brown. Antenna mainly brown, at most infuscate above at the base.... 22 - Sawsheath broadly rounded at apex in dorsal view (figs. 691-2). Either apex
of scutellum and basal tergites of abdomer mainly black, or antenna almost entirely black (except at apex below). 23

Fras. 712-18.-Saw of Nematus: 712, crassus; 713, bipartitus; 714, monticola; 715, melanocephalus; 716, salicis; 717, myosotidis; 718, tibialis.

22 (21) Saw with prominent teeth on lower margin (fig. 725) (the tenth tooth from the apex projecting about one-third as much as its basal length). 7-9 mm.
(This species in the adult is not for certain distinguishable from N. ferruginea except by the saw).

Larva on Betala. Widespread throughout Britain but not common: Devon, Rucks., Herts., Norfolk, Argyle, Lanark and Inverness. V-VI. N. and C. Europe. ... q cadderensis Cameron

723 ser.
min 724

Figs. 719-25.-Saw of Nematus: 719, flavescens; 720, stichí; 721, leionotus; 722, fáhraei 723, ferrugineus; 724, miliaris; 725 cadderensis.

- Saw with less prominent teeth on lower margin (fig. 723) (the tenth tooth from the apex projecting less than half its basal length). $7-9 \mathrm{~mm}$.
(This species in the adult is not for certain distinguishable from N. codderensis except by the saw).

Larea on Salix atrocinerea Brot. etc. Common throughout Britain and Sreland. V-VI and VII-IX. N. and C. Rurope to E. Siberia
$q(=$ glottianus Cam. $)$ ferrugineus Förster
23 (21) Seutelium with transverse black band along hind margin and abdomen, with tergites 1-4 to 1-7 largely or wholly black. Mesonotum shining and impunctate. Antemna black above and brown below. Sawsheath bluntly subtriangular in dorsal view (fig. 692). Saw fig. 721. 7 mm .

Larwa on Betula. Only known from England: S. Devan (bred by R. C. L. Perlins), Surrey, Oxshott, 1 ㅇ, v. 1936 (J. F. Perkins) and Findhedd, 1 ㅇ, iv. 1946 (C. H. Andrewes) ; and from Irelond: Wicklow (Miss G. S. Scott). IV-V. (Benson, 1933, Stylops 2:259-80), Also fownd in Findand

* leionotus (Benson)
- Scutellum without a black band on its hind margin. Abdomen with at most 1-3 basal tergites marked with black in the middle. Mesonotum dull with fine surface sculpture. Antenna entirely black except at apex below. Sawsheath bluntly rounded in dorsal viow (fig. 691). Saw fig. $722.6-7 \mathrm{~mm}$.

Larva on Populus tremula L, Probably occurs in all our larger aspen thickets but is so far only recorded from England: S. Devon (R. C. L. Perkins); Herts., Bricket Wood; Bucks, Whaddon Chase: Beds., Kings Wood; and Scotland : Inverness, (Aviemore, 1934 and 1952). F-VI. (Perkins, 1929, Ent. mon. Mag. $65: 33$). C. and N. Europe
¢ (Amauronematus fähraei) fåhraei C. G. Thomson
24 (15) Postocellar area of head at least mainly black and/or antenna almost entirely black. Front and middle lobes of mesonotum usually mainly black and abdomen usually mostly black above with the pale parts yellow or green in life. Stigma often more or less sordid25

- Postocellar area mainly pale with at most but a black spot and antenna conspicucusly pale below and at apex. Mesonotum with pale background marked more or less with bleck on the lobes. Basal tergites more or less marked with black; the pale colour green in life fading to straw in death. Stigma pale.

34
25 (24) Mesopleura and hiud orbits mainly black.. . . 26

- Mesopletra and usually hind orbits entirely pale.

31
26 (25) Rither abdomen entirely black, or, if partly pale bolow and at sides, then cerci reaching back beyond apex of short blunt sawsheaith (fig. 690). Mesoploura often dull, Larger species ($8-9 \mathrm{~mm}$). 27

- Abdomen always partly pale below and cerci not reaching back as far as apex of the narrow sawsheath (figs. 678 and 693). Mesopleura shining. Smaller species ($5-7 \mathrm{~mm}$.) .29
27 (26) Abdomen entirely blnck: Cerei not reaching back as far as apex of sawshoath (fig. 689). Stigma piceous .28
Abdomen yellow at sides and below. Cerei reaching back beyond apex of sawsheatli (fig. 690). Stigma pale in the middle. $6-8 \mathrm{~mm}$. Saw fig. 711 .

Latya on Populus and Salix. Throughout Britain and Ireland but males wery scarce. V-YI and VII-VIIT. N. and C. Europe
q nigricornis Lepoletier
Inner hind tibial spur half as long as basitarsus and more than one and a half times as Iong as apical breadth of hind tibia (fig. 673). Sawsheath fig. 689. $8-9 \mathrm{~mm}$.

Larva on Betula, Populus and Salix as well as Rumex obtusifolius L. Throughout Britain and Ireland sparingly. V-VII. N. and C. Europe to E. Siberia. \& (Holocneme crassa) crassus (Fallén)

Inner hind tibial spur shorter than apical breadth of hind tibia (fig. 672). Saw fig. 710. 8-9 mm.

Larva usually on Salix and Populus but also recorded from Ranwoulacece (Aquilegia, Delphinium and Paeonia). England: widespread but not generally common; Scotland: Angus, 1939. V and VI-VIII (and IX). N. and C. Europe to Italy and Coucasus
\& (Holocneme coerulencarpa) eoeruleocarpus Hartig

29 (26) Stigma pale. Cerci reaching almost to apex of sawsheath (cf. Gig. 693). 30
Stigma piceous. Cerei in dorsal aspect not reaching back as far as half way to apex of projecting portion of sawsheath (fig. 678). Saw fig. 704. $\overline{5}-6$ mm.

Larvae gregarious on Aruncus silvester (Kosl.). Normally parthenogenetic with very rare males. (See Robbins, 1927, Lond. Nat. $1926: 11-15$). Alien, very abundant in gardens almost wherever this food-plant is grown as far north as Angus (1946) but though this plant has been in cultivation in Englard since 1633 , the sawfly was not detected here till 1924, (\dagger Morice, 1925, Proc. ent. Soc. Lond. 1924 : cxv-cxivit). $\quad I V-1 X$, many brooded. O. and N. Europe

* 9 spiraeae Zaddach

30 (29) Abdomen with tergites almost entirely black above. Sawsheath in dorsal aspeet triangular with broad base and acute behind (cf. fig. 681). Frontal area of head without a clearly defined lateral carina and inner orbits with a large pale spot above reaching almost to lateral furrows of postocellar area and down to level of antennal sockets. Saw fig. 709. 5-6 mom.

Larva on Populus tremula L. Very few British recorde: Cameron records 2 ¢from Seotland: Stirling (Kilsyth Glen and Cannisburn) ; solitary specimens have been found in England: Deron, Hants., Herts., Beds., Warwick., Durhan and Cumberland. V-VI. C. and N. Europe. © unlonoun
*

- Abdomen above with tergites black medially but broadly pale at the sides and more or less on their apical margins. Sawsheath in dorsal aspect narrow, only tapering slightly behind where it is blunt (fig. 693). Frontal area of head with a clearly defined lateral carina and inner orbits with only a small spot above and narrow uppor half of margins pale. $5-7 \mathrm{~mm}$. Saw fig. 733.

Throughout Britain and in Ireland. V-VI and VII-VIII. N. and C. Europe to Caucasus. (cf. myosotidis couplet 13) $申(=$ pulchellus Cameron, segmentarius Förster auctt. nec. Förster) incompletus Förster
31 (25) Cerci reaching back more than half way to apex of projecting portion of sawsheath. Hind tibia black-lined above or antenna black except for discolouring at joints between segments. 32

- Cerci very short and not reaching back as much as half way to apex of projecting portion of sawsheath. Hind tibia not black-lined above and antenna usually pale beneath. .33
32 (31) Pale colour in life yellow; hind tibia mainly black. Saw fig. $718.6-7 \mathrm{~mm}$. Larva on Robinia pseud-acacia L. Parthenogenetic species with mats urknown. Introduced into this country with its food-plane in early nineteenth century. Widely distributed in England wherever its food-plant is growen. V-VI. Native of N. America but by introduction now widespread in Eurppe
*q tiblalis Newmen
Pale colour in life green ; hind tibia black only at apex. Saw fig. 732. $6-8 \mathrm{~mm}$. (Very variable in colour and size).
Larva on Betula. Parthenogenetic species with male very rare. Common throughout Britain. IV-IX. C. and N. Europe. 우 ($=$ poecilonotus auctt. nec. Zaddach, palliatus Thomson, Cameron in part) viridescens Cameron
33 (31) Larger species (6-8 mm.). Mesonotum duller with more defined surface punctures and medial division of fore-lobes obsolescent. Hind tibia at apex and hind tarsi black. Mesostornum black or entirely pale. Saw fig. 706.

Larta on Populus, Salix and Betula, feeding gregarionsly. Throughout Britain and Ireland. V-VI and VII-PIII, N. and C. Europe and Siberia. O (maculiger Cameron) melanaspis Hartig
Smaller species ($5-6 \mathrm{~mm}$.). Mesonotum shining with less defined surface punctures and with medial division between fore-lobes clearly marked. Hind tibiae and tarsi, as well as mesosternum, entirely pale. Saw fig. 703.

Larva on Salix and Populus. Britair and Ireland. V-VI and VII-VIII. C. and N. Europe to Spain and to Siberia
¢ ($=$ orbitalis Camoron) hypoxanthus Förster

34 (24) Postocellar area much longer in the middle than the diameter of an ocellus (fig. 662) or not clearly margined behind (fig. 664). Clypeus clearly excised in middle of front margin (fig. 658). Inner hind tibial spur usually much longer than apical breadth of hind tibia. 35

- Postocellar area in the middle scarcely longer than the diameter of an ocellus and margined behind with a distinct carina (fig. 663). Clypeus only very slightly and broadly emarginate in front (fig. 659). Inner hind tibial spur scarcely Ionger than apical breadth of hind tibia. $6-8 \mathrm{~mm}$.
(Very variable in the extent of the black colour above: the early spring forms are the darkest and can be almost entirely black above on the thorax and abdomen especially in northern regions; the mid-summer forms, however, are mostly green above with perhaps only the three clark flecks on the mesonotum, the invariable anchor on the scutellum and on the

Figs. 726-33.-Saw of Nematus : 726, oligospilus ; 727, ponojense ; 728, frenalis ; 729, bergmanni ; 730, polyspilus ; 731, viridis; 732, viridescens; 733, incompletus.
abdomen a small black flock on the inst or first and second tergites). Saw fig. 729.

Laroa on Salix, Throughout Britain and Ireland, common. IT-IX, many brooded. C. and N. Europe to Siberia

Q (= curtispinct Thomson) bergmanni Dahibom
35 (34) Either sawsheath in lateral and dorsal view tapering evenly to an acute apex (in dorsal view narrower apically than a cercus (fig. 697) and in lateral view with length of free upper edge as great or greater than the greatest height (fig. 675)) ; or (i.e. in polyspila, the sawsheath may not quite conform to this definition) metascutellum pale except only for a dark round central spot
Sawsheath bluntly rounded or subtruncate at apex in lateral and/or dorsal view (in dorsal view blunter and broader at apex than the corci, fig. 698); in lateral view length of free upper edge clearly less than the greatest height (of. fig. 677). Metascutellum entirely or more or less marked with black, but never pale with only the centre dark

37
36 (35) Metascutellum usually yellow, sometimes entirely so, often with a dark suffusion on hind margin, or a lunate dark mark which may be attenuate in the middle to form two lateral marks and sometimos the whole of this part suffused with black. Supra-clypeal area normally produced (so that in dorsal view it projects beyond front edge of antennal sockets, cf. fig. 664). Saw fig. 731. $6-9 \mathrm{~mm}$.

Larka on Betula. Common throughout England; Scotland: Lanarl, Ross and Perths.; Ireland: Cavan and Wicklow. VI-V and VIT-VIII. N. and C. Europe. $7(=$ bergmanni Dahlbom auett. nec. Dahlbom; brevivalvis Thomson Konow nec. Thomson ; dispar Zaddach auctt. brit. nee. Zaddach)
viridis Stephens
Metascutellam pale, almost white, with a very conspicuous black spot oceupying the middle, usually round or transversely elliptical in shape, Supraclypeal area less pronounced (so that in dorsal view it does not project beyond front edges of antennal sockets, fig. 662). Saw fig, 730. $7-8 \mathrm{~mm}$,

Larve on Alnus glutinosae (L.) Gaertn. Throughout Britain and Ireland. V-VI and VII-VIII. C. and N. Europe to Italy
*C ($=$ glutinosae Cameron) polyspilus Forstor
37 (35) Sawsheath projects beyond cerci (figs. 674 and 698) . 38
Sawsheath blunt and subtruncate apically (fig. 696) with cerci projecting beyond apex. 89 mm .

Larwa on Betula. Fngland: Surrey, Bucks., Herts., Beds.; Scotland: Inerness. (\dagger Benson, 1934, Ent. mon. Mag. $79: 203$), Elsewhere only Sweden and Finland

O (nec. brevivalvis Thomson Konow) brevivalvis C. G. Thomson
38 (37) Hind ocelli (fig. 664) clearly further apart than their distance from hind margin of head. Postocellar region more or less defined behind. Saw figs. 727-8 .39

- Hind ocelli about as far apart as their distance from hind margin of head (f. fig. 662). Postocellar region rounded behind and not defined. Sawsheath tapering behind. Saw fig. 726. $5-6.5 \mathrm{~mm}$.

Larva on Salix. Throughout Britain and Irelard. V-VI and VII-VIII. N. and C. Rurope to Caucasus. . . $7(=$ salicivorus Cameron, sylvestris Cameron, miliaris Panzer Cameron nec. Panzer, capreae L. auctt. brit. we. L.)
oligospilus Förster
39 (38) M in fore wing slightly sigmoid in shape, and joining Cul obliquely (fig. 667). Sawsheath subparallel-sided in dorsal view. Saw fig. 727. 5-6.5 mm.

Larva undescribed but in Britain associated with Salix pentandra L. Enpland: Yorks., Malham Tam, vi. 1955 (R. B. B.) ; Scotland: Roxburghshire, Newcastieton, vi. 1940 (R. B. B.). New British Record. N. Europe and Siberia. .? ponojense (Hellén)
M in fore wing strongly bent in the middle and forming a right angle where it joins Cu 1 (fig. 668). Sawsheath strongly tapering apically in dorsal view. Saw fig. 728 . $5-6.5 \mathrm{~mm}$.

Lamo on Salix. Scolland: Inverness-shire, Nethybridge, l 9, 7.vi. 1934 (R.B.B.). New British Record. N. Europe and Siberia
q ($=$ fastasus Konow) frenalis C. G. Thomson

> Key to Species of Nomatus,
> Males.

1 Arctic alpine species at most 5 mm . long, with pale stigma, and small eyes (fig. 660) (so that in lateral view the length of the middle of the eye is less than twice the length of the head behind the eye) and hind tibial spurs not longer than apical breadth of tibia. Penis valve fig. 575
reticulatus Holmgien and ? nubium (Benson)

- Lowland species more than 5.5 mm . long, or with larger eyes (fig. 661) (more than twice as long as the length of the hoad behind the eye in lateral view). Stigma sometimes dark and spurs often larger.
.2

Fige, 734-40.--Penis valve of Nematus: 734, lucidus; 735, umbratus; 736, bipartitus; 737, pavidus; 738, myosotidis; 739, melanocephalus; 740, salicis.

2 (I) Abdomen never black above with a red girdle, often stockier or smaller and often with shining thorax.

- Very elongate species with torpedo-shaped body, red girdled, 8-11 mm. long. Mesonotum and mesopleura dull with heavy punctures and surface sculpture. Penis valve fig. 734
of lucidus (Panzer)
3 (2) Fither inner orbits, or mesopleura mainly black.
Inner orbits pale, continuously even if narrowly (or almost so), and mesopleura also mainly pale. 21
4 (3) Prolongation of eighth tergite not broader apically than apex of hind tibia and truncate (fig. 746)
. 5
Prolongation of eighth tergite very large, about one and a third times as broad as aper of hind tibia (tig. 745). Abdomen yellow with a variable amount of black above. Penis valve fig. $742 . \ldots .$. ${ }^{7}$ ribesii (Scopoli)
5 (4) Abdomen yellow above except, at most, for a medial row of black flecks.... 6
- Abdomen almost entirely black above... 14

743
otr.

Figs. 741-4.-Penis valve in Nematus: 741, jugicola; 742, ribesii; 743, olfaciens; 744, leucotrochus.
Figs. 745-6-Male apical tergite in Nematus: 745, ribesiz ; 746, leucatrochus.
6 (5) Abdomen yellow with at most first and second tergites black flecked. Stigma, black
Evther abdomen more extensively flecked with black, or stigma not black. . . . 9
-
(6) Smaller species (less than 6.5 mm .) with mesopleura at least mainly black, is also are outer orbits and antenna

- Larger species (over 65 mm .) with yollow mesopleura, face below antennae,
Power outer orbis and antenna beneath. Penis valv face $740 . .6$ salicis (A.)
(7) Projection to eighth tergite about half as wide apically as apex of hind tibia (and about as wide as apex of metatarsus). Penis valve fig. 735
${ }^{8}$ umbratus Thomson
- Projection to eighth tergite about as wide apically as apex of hind tibia (cf. fig. 746). Penis valve fig. 743.......................... . ${ }^{\text {d }}$ olfaciens Benson
9 (6) Stigma acute at apex and sometimes, together with C, brown,.............. 10
- Stigma obtuse at apex and clear yellow, as is C.............................. 12

10 (9) Inner orbits continuously pale. Front wall of frontal area often notehed

- Inner orbits not continuously pale. Front wall of frontal area not notehed medially.
11 (10) Scutellum scarcely convex (so that the middle is about as high as the posttergite) and shining (with at most sparse sculpture). $5 \cdot 5-6 \cdot 5 \mathrm{~mm}$.
o monticola C. G. Thomson
- Scutellum clearly convex (so that the middle is higher than the post-tergite) and with coarse though shallow punctures. Penis valve fig. 736 . $5-6 \mathrm{~mm}$.
a bipartitus (Lepeletier)
12 (9) Pale colour orange. .13
- Pale colour straw.. σ^{7} incompletus Förster

13 (12) Antenna entirely black. Penis valve fig. $738 \ldots .$. of myosotidis (Fabricius)

- Antenna partly yellow. Penis valve fig. 741 ô jugicola C. G. Thomson

14 (5) Stigma, hind tarsus above and whole antenna piceous; mesopleura pale or dark
.15

- Stigma yellow oi brown ; hind tarsus not infuscate above or antenna conspicuously pale beneath; mesopleura dark. 19
15 (14) Abdomen entirely black. .. 16
- (15) Abdomen at least partly pale beneath.. 17

16 (15) Inner hind tibial spur elearly more than one half as long as basitarsus. Penis

- Inner hind tibial spur clearly less than one half as long as basitarsus. Penis valve fig. 752. $7 \cdot 5-8 \cdot 5 \mathrm{~mm} . . \ldots \ldots \ldots \ldots \ldots . \boldsymbol{b}^{7}$ coerulecearpus Hartig
17 (15) Mesopleura pale. Penis valve fig. $739.56 \mathrm{~mm} . . .{ }^{2}$ olanocephalus Hartig
- Mesopleura black.

18 (17) Hind femur entirely or almosit entirely pale; inner orbits mainly pale, eighth tergite with a truncate rectangular apical projection about as wide as apex of tibia (fig. 746). Penis valve fig. 744. 6 mm..... ${ }^{7}$ Ieucotrochus Hartig

- Hind femur and imner orbits mainly black. Projection to eighth tergite rounded apically though not clearly defined laterally, but apparently broader than apex of hind tibia. Penis valve fig. $753.6-7 \mathrm{~mm}$.

के nigricornis Lepeletier
19 (14) Smaller (under 6 mum.). Hind tarsus infuscate but inner orbits and underside of anterna pale. Projection to eighth tergite narrower at apex than apical breadth of hind basitarsus.
.20

- Larger (over 6 mm). Hind tarsal segments pale except at apices, but inner orbits and antenna entirely black or piceous. Projection to eighth tergite broader at apex than apex of hind basitarsus. Penis valves figs, 749-50.
ferrugineus Förster and cadderensis Cameron
20 (19) Tergites entirely black. (Not seen). $5-5.5 \mathrm{~mm} . \ldots$. ot * fuscomaculatus Förster
Tergites more or less pale at sides. Penis valve fig. $754 . \quad 5-5.5 \mathrm{~mm}$.
or melanaspis Hartig
21 (3) Projection to eighth tergite quite twice as long as breadth of the subtruncate apex. Inner orbits brown. Mesostemurn dark. $6 \cdot 5-7 \mathrm{~mm}$.
ot miliaris (Panzery and fagi Zaddach
- Projection to eighth tergite not nearly twice as long as its apical breadth. Inner orbits yollow or white. Mesosternum pale or dark.

22

22 (21) Postocellar region much longer than diameter of an ocellus (fig, 662) or hind margin not olearly defined medially (fig. 664). Clypeus deeply emarginate in the middle in front (fig. 658). Inner bind tibial spur longer than apical breadth of tibia. 23

- Postocellar region very short (fig. 663) so that sharp odge between dorsal and hind face is not much further from a hind ocellus than the diameter of a hind ocellus. Front of elypeus only slightly emarginate in the middle (fig. 659). Inner hind tibial spur scareely longer than apical breadth of tibia.

Figs. 747-52.-Penis valve of Nematus : 745-6, stichi; 748, flavescens; 749, cadderensts; 750, ferrugineus; 751, crassus; 752, coeruleocarpus; 753, nigricornis.

Projection to eighth tergite about as long as its apical breadth. Penis valve fig. 758. Hypopygium bluntly rounded at apex. Colour very variable but hind surface of head black. $5-6 \mathrm{~mm}, \ldots$. bergmanni Dahlbom
23 (22) Hypopygium rounded or narrowly truncate at apex. Frontal area of head without a tubercle adjoining middle of front wall
. 24

- Hypopygium with the blunt apex emarginate medially. Frontal area of head often with a tubercle adjoining middle of front wall. $5 \mathrm{~mm}27$
24 (23) Projection to bighth tergite clearly broader at apex than long. Pale parts of face yellow.
. 25
- Projection to eighth tergite at least about as long as apex is broad. Palo parts of face yellowish white

Frgs, 754-60.-Penis valve in Nematus: 754, melanaspis; 755, hypoxanthus; 756, viridescens; 757, viridis; 758, bergmanni; 759, frenalis; 760, oligospilus.

25 (24) Projection to eighth tergite broadiy rounded at apex, not raised and without a medial carina extending forward. Last 2 tergites mainly black. 5-6 mm. 28

Projection to eighth tergite in form of a raised triangle continned forwards as a medial carina to front of eegment. Last 2 tergites mainly pale. Penis valve fig. 755. $5-5.5 \mathrm{~mm} .$.
(24) Mesosternum palo. 8 brevivalvis Thomson

Mesosternum black. Penis valve fig. $757 \ldots$. vitidis Stephens
27 (23) Hind ocelli almost as far from back of head as their distance apart (cf. fig. 662). Penis valve fig. $760 \ldots .$. a oligospilus Förster
Hind ocelli about twice as far apart as from back of head (fig. 664). Penis valve fig. 759

Penis valve fig. $747 . . .$. δ stichi (Enslin)
(27) 11 in fore wing slightly sigmoid in shape and joining Cul obliquely (6.g. 667) da ponojense (Hellón)

- $\quad \mathrm{M}$ in fore wing strongly bent in the middle and forming a right angle where it joins Cul (fig. 668)
σ^{6} frenalis C. G. Thomson

Genus Pachynematus Konow.

Characteristic of this genus is the development, not found elsewhere, of a ventral flap to the base of the spine on the penis valve and the peculiar armature to the eighth tergite in the males. The armature, however, is not developed in every species, nor, it seems, is the flap to the penis valve. The group attached to Coniferae, for example, lack the armature on the eighth tergite and have the flap on the penis valve reduced to a mere notch; they are thus intermediate between Pachynematus and the North American Pikonema. P. rumicis (and related species not occurring in Britain) shows neither the armature to the eighth. tergite nor the notch to the penis valve, and its generic position is in doubt.

Over 70 species have been described. Of the 18 found in Britain most were dealt with by Benson (1948, Ent. mon. Mag. 84: 58-65), but the females of several of them cannot yet be separated ; that of calcicola is distinguished here for the first time.

Most of the species are attached to Gramineae and Cyperaceae (on which families no other Nematinae feed); a few feed on Salicaceae, Polygonaceae, and two or three groups on Coniferae.

Key to Species of Pachyzematus Konow.

1 Hind tarsus about as long as hind tibia, or even longer. Stigma of fore wing usually darker at apex than base. Sawsheath truncate at apex in lateral view and emarginate in dorsal wiow (figs. 764-5), and often strongly compressed laterally. Male with medial projection at apex of eighth tergite often very small, carinate laterally, with declivous sides, and narrower apically than apex of hind tibia (figs. 782-4). Attached to Coniferae (omperfectus and scutellatus groups)

- Hind tarsus only two-thirds to three-quarters as long as hind tibia. Stigma never clearly darker at apex than base. Sawsheath not truncate at apex in lateral view, and in dorsal view never emarginate at apex nor strongly compressed laterally (figs. 706-770). Male with projection to eighth tergito (figs. 785-97) either long and much broader apically than apex of hind tibia, or, if short and narrow, then not carinate laterally. Attached to Gramineae, Cyperaceae, Polygonaceae and Salicaceae (clitollatus, Firbyi, vagus, rumicis and other groups)

2 (1) Sawsheath of 9 strongly compressed laterally, so that it is narrow and several times longer than broad in dorsal aspect (fig. 765) ; cerci very short and not reaching back nearly as far as apex of sawsheath. Male with projection to eighth tergite very narrow and scarcely expanded bohind (fig. 782). Underthorax entirely pale. Tibiae with long spurs (those on hind legs as long as half basitarsus). Eyes not more than about one and one-third times longer than broad. Attached to Picea (scutellatus group). 3

- Sawsheath of 9 as broad in dorsal aspect as apex of hind tibia (fig. 764): cerci reaching back as far as apex of sawshbath. Male with the medial carina to its eighth tergite expanding behind into a triangular field (fig. 784). Underthorax with at least mesosternum black. Tibial spurs short those on hind legs scarcely longer than apical breadth of tibia). Saw fig. 772. Penis valve fig. $808, \quad \pi-7 \mathrm{~mm}$.

Figs. 761-3.-Head of Pachynematus from above in : 761, clibrichellus: 762, apicalis; 763, xanthocarpus.
Figs. 764-70.-Sawsheath from above in Pachynematus: 764, imperfecius; 765, scutellatus; 766, rumicis; 767, calcicola; 768, clibrichellus; 769, xanthocarpus; 770, apicalis.

Larva on Larix decidua. Miller. England: Dewon, Gloucester, Surrey and Herts. (†Perkins, 1929, Rep. Dev. Ass. Adv. Sci. 61: 305). IV-V. Introduced from C. Europe

Of and \circ (nec. imperfectus Zaddach Camoron) imperfectus (Zaddach)
3 (2) Smaller species (not exceeding 6.5 mm .). Stigma of fore wing only darkenod on apical margin. Ovipositor (sawsheath - basal plate) shorter than basitarsus of hind leg, and in lateral view with apical truncation more than twice as long as upper edge. Saw fig. 773. In A soutellum without a pale front border. Penis valve fig. 809 . $5 \cdot 5-6 \cdot 5 \mathrm{~mm}$.

Figs. 771-5̆.-Saw of Pachynematus: 771, scutallatus; 772, imperfectus;
773. montanus; 774, albipennis; 775, rumicis.

Larva an Picea and Abies and sometimes destructive thereto. England: Devon, Herts., Suffolk; Scotland: Invemess. (\dagger Perkint, 1929, Rep. Dev. Ass. Adv. Sci. 61 : 305). V. Introduced from C. Europe
σ^{x} and 9 montanus (Zaddroh)

- Larger species (7 mm . or longer). Stigma of fore wing with hind apical fourth darkened. Ovipositor as long as $\mathbf{3}$ basal hind tarsal segments together, and in lateral view the apical truncation shorter than the dorsal edge. Saw fig. 77l. In $\mathrm{g}^{\text {t }}$ the dark seutellum bordered in front with pale colour. Penis valve fig. 810.

Larva on Picea and Abies and often common. Widelydistributed in Englard, calso in Wales and Ireland. (†Morice, 1906, Ent. mon. Mag. 32: 209). Introduced from N. and C. Europe. ${ }^{\text {s }}$ and q scutellatus (Hartig)

4 (1) Inner hind tibial spur half as long as basitarsus. Stigma piceons, or hind femur reddish. Abdomen of $\%$ black above and green to white below.
(Find tibia less than one and one-third times longer than hind femur without second trochanter)

- Inner hind tibial spur less than half as long as basitarsus. Stigma pale and at most but slightly infuscate. Hind femur pale yellow, more or less infuscate from base.

6
5 (4) Stigma and at loast apex of hind femur black. Sawheath rounded behind in dorsal view and the very rare δ with an enlarged spatulate projection to eighth tergite (fig. 793). Saw fig. 776. Penis valve fig. $800.4-\overline{5} \cdot 5 \mathrm{~mm}$.

Larva on Poa, Festuca and other Graminece. Throughowt Driain and Ireland even to the tops of the highest mountains in Scollond, IV-IX (2 or more broods). N. and C. Earope to Faroes, Iceland, and Greenland, N. Asia and $N, A m e r i c a \ldots . . . \sigma^{2}$ and 9 ($=$ conductus Ruthe, graminis Cameron, nec.
obducius Hartig Cameron, palliventris Cresson) obductus (Hartig)

- Stigma and hind femur entirely reddish-yellow. Sawsheath diamond-shaped, contracted at base and acute behind ; the very rare 0^{7} has the eighth tergite only slightly produced apically (fig. 786). Saw fig. 777. Penis valve fig. 801. $6-7 \mathrm{~mm}$.
It seems likely that more than one species is here confounded as females have been bred from larvee feeding on Carex as well as from larvae feeding on Salix; but males, which in this genus show the better specific cifferences, are very rare in this species group and have not been bred yet from either food-plant. Widely distributed throughout Britain and Ireland but only known of was taken at Boxmoor, Herts., 15.v.1938. V-VIII. N. and C. Europe, Stberia, Mongolia and N. America
$\vec{\sigma}$ and $9(=$ lewcogaster Hartig, corticosus MacGilivray Syn nov.) vagus (Fabricins)
Smaller species (under 6 mm .). Wings yellowish hyaline with yollow stigma. Either scitelium convexly rounded with coarse punctures, or antenna short (in $\%$ not longer than C of fore wing and in σ^{2} not longer than $\mathrm{C}+$ stigma). Male with only a small medial projection to oighth tergite.
- Often over 6 mm . Wings usually not yellowish hyaline. Scutellum scarcely convex and almost impunctate. Antenna in q usually longer than C and in σ than $\mathrm{C}+$ stigma. Male with eighth tergite often ornately produced (figs. 785, 787-92,794-7)
7 (6) Abdomen yellow with at most first tergite black-marked; head mainly black with black imer orbits. Antenna longer (in $\%$ longer than $\mathrm{C}+$ stigma and in ${ }^{6}$ almost as long as fore wing). Scutellum convexly rounded and coarsely punctured. Saw fig. 774. Penis valve fig. $799.4 \cdot 5-5 \cdot 5 \mathrm{~mm}$.
(Very similar to Nematus bipartitus q.v., the ${ }^{A}$ of which has a very small inner tooth to the hind tarsal claw but lacks the ventral notch to the spine on the penis valve).

Larea on Polygonum persicaris L., etc., on the underside of rolled leaves. Englard north io Ninteudbrightsivire but not common. V-VI awd VII-VIII. Europe and Siberia.......................... δ and \subset albipennis (Hartig)

- Abdomen mainly bronze above (and in q below also) and head mainly yellow with yellow orbits. Antenna shorter (in onot longer than C of fore wing, in of not longer than $\mathrm{C}+$ stigma). Scutellum scarcely convex and sparsely sculptured. Saw fig. 775. Penis valve fig. $798.4 \cdot 5-5.5 \mathrm{~mm}$.

Larva on Rumex spp. Comswon locally hhroughow Britain and Irsland (1-2 broods). V-VII. Burope. north to Faroes and Iceland, Siberia and Alaska $\cdots \sigma^{\circ}$ and $\%(=$ Havipennis Cameron, articus Thomson Cameran nes.

Thoms, rumicis Frallén) rumicis (Linné)
8 (6) Head scarcely expanded behind the eyes (figs. 761-2). Almost entirely black except for labrum, tegula, edge of pronotum and extrome apex of abdomen. Inmer hind tibial spur clearly longer than apical breadth of himd tibia; hind tibia less then one and a third times as long as femur (without second trochanter). Mesopleura often more or less covered with tubercles. 9

- Head very strongly expanded behind the eyes (fig. 763). Variousiy coloured, often extensively marked with pale yellow. Inner tibial spur not or seareely longer than apical breadth of tibia; hind tibia about one and a half times as long as femur (without second trochanter). Mesopleura smooth and shining

Fjgs. 776-81.-Saw of Pachymematus: 776, obductus; 777, vagus; 778, apicalis; 779, clibrichellus; 780, calcicola; 781, xanthocarpus.

9 (8) Pubescence on head and thorax fine and silvery and scarcely longer than diameter of an ocellus (fig. 762). Lowland species. Sawsheath fig. 770. 10 Pubescence on head and thorax coarse, piceous and up to as long as twice the diameter of an ocellus (fig. 761). Arctic-alpine species. Sawsheath fig. 768. 6-7 mm.

Apical projection to male sighth tergite as a simple triangle (fig. 789). Penis valve fig. 803 . Saw fig. 779 .

Larva on Carex. Scotland: Perths., Inverness, Angus, Sutherland and Caithness, mostly on monutain tundra, but at sea level at Wick in Caithness, vi.1934. (Renson, 1935, Trans. R. ent. Soc. Lond. $83: 33-34$) V-VI. Arctic Eurasia and N. America........... σ^{*} and 9 ($=$ thonsoni Cameron, clibrichensis Cameron, pubescens Marlatt) clibrichellus (Cameron)

Figs. 782-90.-Male apieal tergite in Pachynematus: 782, scutellatus; 783, mantanus; 784, imperfectus; 785, smithiae; 786, vagus; 787, kirbyi; 788, truncatus; 789, clibrichellus: 790, moerens.

10 (9) Male with eighth tergite bearing an apical projection much broader than long (fig. 790). Penis valve fig. 802. Female with antenna only about as long as C of fore wing, and with fourth segment shorter than longest axis of eye; hind basitarsus about three and a half times as long as broad. Hind tarsus 0 and 9 about as long as tibia. $5 \cdot 5-6.5 \mathrm{~mm}$.

Larva unknoum. England: Devon, Somerset, Bucks., Herts., Stoffs, and Cheshire: Ireland: Co. Cavan. (\dagger Morice, 1906, Ent. mon. Mag. 42 : 208). IV-V. N. and C. Europe
δ and $f(=$ pleuralis Thomson, falowus Ross) moerens (Förster)
Male with eighth tergite bearing an apical projection longer than ite apex is broad (fig. 791) Penis valve fig. 804. Female with antenna as long as $\mathrm{C}+$ half stigma, and with fourth segment longer than eye. Hind basitarsus about four and a half times as long as broad. Hind tarsus σ° and 9 about three-quarters as long as tibia. Saw fig. 778. $5 \cdot 0-6.5 \mathrm{~mm}$.

Larva on Gramineae. England: Devon, Hants., Surrey, Bucks., Herts., Beds, and Cheshire; Wales: Glamorgan; Scotland: Lanark, Dumbarton and Irwerness ; Ireland: Co. Cavan. IV-F...... σ and $\%$ apicalis (Hartig)

12 (11) Projeotion from eighth tergite subtruncate at apex and without a medial carina or sulcus (figs. 785, 787-8). Spur on penis valve alongside dorsal flap (figs. 805-7). .13
Projection from eighth tergite rounded at apex and with an apical medial sulcus more or less developed, giving place basally to a medial carina (figs. 792-7). Spur on penis valve alongside ventral flap (figs. 811-5)......... 15
13 (12) Projection of eighth tergite clearly longer than its apical breadth (figs. 786-787)

- Projection of aighth tergite not longer than its apicel breadth (fig. 788).

Tegulae, most of hind femur and abdomen black except for apex of hypopygium and apex of projection from the eighth tergite. Penis valve fig. $806 . \quad 5 \cdot 5-7 \mathrm{~mm}$.

Larvae on Gramineae inoluding cultivated Triticum. Widespread in Britain to Inverness; calso Ireland: Co. Wichlow. (\dagger Benson, 1948). V-VI. O. and N. Europe and N. America................... of truncatus Benson

14 (13) Projection to eighth tergite dark and very narrow with raised rim at apex (fig. 785).
Black with the following parts pale: clypeus, labrum, apex of femora, tibiae, tarsi, sides of eighth tergite and hypopygium. Penis valve fig, 807. 6.5 mm .

Only 1 of known from Britain, without exact data, Stephens Oall., B.M. 1853-46 (\dagger Benson, 1948). High Alps of Switzerland, Swedish Lapland, and Mt. Washington, in New Hampshire, U.S.A. ㅇ unknown.. ${ }^{7}$ smithiae Ross

- Projection to oighth tergite usually entirely pale and without a raised apical rim (fig. 787). Abdomen very variable in colour above from entirely yellow to entirely black. Wings often more or less infuscate. Penis valve fig. $805.6-7.5 \mathrm{~mm}$.

Larva on Carex. Throughout Britain and Ireland even to the tops of the highest Scottish mountains. V-IX. N. and C. Europe, Sbleria and N. America . ${ }^{3}$ ($=$ diaphanus Eversmann, flaviventris Hartig, turgidus Zaddach, umbripennis Eversmann, zaddachi Konow, suadus Cresson) kirbyi (Dahlbom)
15 (12) Thickened part of projection to eighth tergite with its greatest breadth at least as broad as its length (figs. 794-5) . 16 f

- Thickened part of projection to eighth tergite longer than its greatest breadth (figs. 792 and $796-7$). 17
16 (15) Tegula and hind femur except at extreme base pale. Projection to eighth tergite with thickened part scarcely narrowed at base and apical lobe not broader than long (fig. 794). Penis valve fig. 813. Smaller species (6-7 mm .).

Larva on Gramineae. Widesprsad in Britain and Ireland. V-IX. N. and C. Europe
$\sigma^{2}(=$ capreale Panzer, trisignatus Förster) clitellatus (Lepeletier)

- Tegula and hind femur mostly black. Projection to eighth tergite with thickened part strongly narrowed at base and apical lobe broader than long

Figs. 791-7.-Male apical tergite in Pachynematus: 791, apicalis; 792, sulcatus: 793, obductus; 794, clitellatus 795, xanthocarpus; 796, chambersi; 797, coteicola.
(fig. 795). Penis valve fig. 814. Larger species ($7-7.5 \mathrm{~mm}$.).
Only known from England: Bucks., Herts., Cambs. and Hunts. (\dagger Morice, 1906, Ent, mon. Mag. 42 : 208). V. N. and C. Europe
ot xanthocarpus (Hartig)
17 (I5) Projection to eighth tergite with thickened part scarcely narrowed at base and medial sulcus obsolete (figs. 796-7). 18

- Projection to eighth tergite with thickened part strongly narrowed at base and the medial sulcus at aper strong (fig. 792). Penis valve fig. 812.

Only known from unique type, Scotland: Killin, Perths,, 31.v-14.vi.1932 (R.B.B.), †Benson, 1948).............................. on 2 sulcatus Benson

Figs. 798-807.--Penis valve of Pachynematus: 798, rumicis; 799, albipennis; 800, obductus; 801, vagus; 802, moerens: 803, clibrichellus; 804, apicalis; 805, tirbyi; 806, truncatus; 807, smithiae.

Figs. 808-15-Ponis valve in Pachynematus: 808, imperfectus; 809, montanus: 810, scutelladus; 811, chambersi; 812, sulcalus; 813, clutelladus; 814, wanthocarpus; 815, calcicola.

18 (17) Flange of projection to eighth tergite foliaceous without lateral angles (fig. 797). Centirely pale. Penis valve fig. $815 . \quad 6-7 \mathrm{~mm}$.

Mainly from limestone grassland in the Chilterns (Bucks., Herts, and Beds.), and the Pennines of the W. Riding of Yorkshire (Pen- Y-Ghent, and Moughton). (\dagger Bensom, 1948). LY $-V I$. France and Switzerland.... of calcicola Benson Flange of projection to eighth tergite angled laterally at apex (fig. 796). Cblack except for basal quarter. Penis valve fig. 811.

Black with the following parts yellowish-white: labrum, tibiae and tarsi of all legs, apical margin of hypopygium and apical half of projection to eighth tergite.
Only known from wnique type on a sandy heath, Beds. : Ampthill, 17.v. 1947 (V.H.Chambers). (\dagger Benson, 1948)...................... chambersi Benson

19 (11) Sawsheath with subapical setae paler and straighter (fig. 769)............. 20

- Sawsheath with apical setae piceous, stiff, and evenly curved (fig. 767). Saw fig. 780.

Antenna with fourth segment shorter than the longest axis of the eye. Scutellum less than one and a half times as broad as long, Apical hind tibial spurs shorter than apical width of tibia \& calcicola Benson
20 (19) Scutellum (without post-tergite) more than one and a half times as broad as long. Inner hind tibial spur at least as long as apical width of tibia. Mesopleura pale marked
Scutellum less than one and a half times as broad as long. Inner hind apical tibial spur not always as long as apical width of tibia. Mesopleura pale marked or entirely black
.22
21 (20) Abdomen pale above, usually with a transverse black stripe on at least some basal tergites, and the black stripes may be partly fused together. Wings more or less infuscate. Antenna with fourth segment at least about one and one-sixth times as long as grealest axis of eye.9 kirbyi (Dahlbom)

- Abdomen entirely black above except for the 2 apical segments. Wings hyaline. Antenna with fourth segment scarcely longer than longest axis of eye and at most less than one and one-sixth times as long

O truncatus Benson
22 (20) Larger species (over 7.5 mm .). Abdomen above, mesonotum and mesopleura of thorax almost entirely black. Saw fig. 781

O (? and sulcatus Benson) xanthocarpus (Hartig)
Smaller species (under 7.5 mm .). Mesonotum and mesopleura of thorax more or less marked with yellow
¢ (? and chambersi Benson) elitellatus (Lepeletier)

INDEX

Numbers refer to pages.
Pages 1-50 were included in Section (a); pages 51-138 in Section (b); and 139-255 and $i-v i$ in Section (c).

Primeipal references are given first; where there are two, the former refers to the female and the laiter to the male. Heavy type refers to a page with an illustration. Synonyms are in italics.
abbreviata (Pristiphora), 157; 156
abdominalis (Monostegia), 85
abdominalis (Nematinus), 194; 193
Abia, 39 ; 6, 35, 37, 38
abietina (Pristiphora), 174; 172, 173, 175
abietinus (Orussus), 22
Abilnae, $38 ; 35,36$
Abilni, $39 ; 37$
abnommis (Amauronomatus), 179, 187:
177, 180, 183, 183, 190
Acantholyda, 10
aceris (Heterarthrus), 77
acerrima (Tenthvedo), 128 ; 127
acuminatus (Nematinus), 192; 193
acutiserra (Pontania), 201, 209; 189. 202
aenea (Zaraen), 39; 38
aeneus (Dolerus), 70, 76; 68, 75
aericeps (Doleras), 67, 74; 66, 73
aethiops (Endelomyia), 96
affinis (Ealdamia), 104
Aglaostigma, 113 ; 110, 111, 112
agrorum (Taxonus), 92
albicincta (Macrophya), 130
albicornis (Urocerus), $19 ; 20$
albida (Periclista), 102
albilabris (Pristiphora), 171; 170
albipennis (Pachynematus), 234; 233, 239
albipes (Ametastegia), 91
albipes (Metallus), 107
allipes (Monophadnus), 10I
albipunota (Macrophya), 130
albomaculata (Tenthredopsis), 114
alchemillae (Monophadnoides), 104
alector (Empria), $90 ; 86$
algida (Pontamia), 203, 208; 200
Allantini, 92
Allantus, $92 ; 53,90,93,117$
Allantus, 111, 121, 128
alni (Hemichroa), 153
alnivora (Pristiphora), 159, 164; 158, 166

Alpestris (Pristiphora), 167; 162, 163, 170
alpina (Cephalcia), i
alpina (Empria), $89 ; 86,88,89$
alpina (Hoplocampa), 1.51; 151
alsius (Nematus), 213
alternipes (Monophadnoides), 104
Amasis, 37
Amsuronematus, 176; 147, 48
ambigua (Pristiphora), 175; 172, 173, 175
amentorurn (Amauronematos), 182, 187: 181, 184
amentorum (Pristiphora), 182
emmerinee (Euura), 195; 110
amorinae (Pseudoclavelaria), 37
Ametastegia, 90 ; 84
amoena (Tenthredo), 126
amphibola (Pristiphora), 176 ; 172, 173, 175
amplus (Amaaronematus), 179, 189; 180, 184, 190
analis (Aneugmenus), 60
arucilat (Athalat), 81
andrei (Tenthredopsis), 114
Aneugmenini, $60 ; 54$
Aneugmenus, $60 ; 55,56$
anglica (Pontania), 201, 209; 199, 200, 202
angustus (Euwa), 195
annulata (Athalia), 81
annulata (Macrophya), 131
annulipes (Caliroa), 96
Anoplonyx, 153; $144,145,146,153$
antennata (Pachyprotasis), 125
anternatus (Nematinus), 194
anthracimus (Dolerus), 72,76; 68,71.75
anticus (Dolerus), 67, 74; 62, 66, 73
anticus (Dolerus), 68
anticus var. schulthessi (Dolerus), 67
aperta (Melisandira), 60
Apethymus, 94 ; 92
apicalis (Pachynematus), 237; 232,
235, 238, 239
apiciffons (Pontania), 201
apperdiculata (Pristionora), 160
Aprosthema, $30 ; 29,30$
arbuscutae (Pontania), 203
arbustorum (Pamphitius), 18
arcticola (Amauronematus), 185, 189 ;
$181,186,188,191$
arcticornis (Pontania), 206, 287
arcticus (Pachynematus), 232
arcticus (Pontania), 186
arcuata (Tenthrodo), 124; 121, 125, $126,127,128$
Ardis, 102; 97, 98
areolatus (Sirex), 20: 21
Arge, 31 ; 2, 29, 30
Argidae, 29; 4, 28
Arginae, $31: 29$
arine (Hoplocampe), 151 ; 151
arundinis (Calameuta), 28
asper (Dolerus), 70, 77; 33 68, 71, 75
asperlatus (Pristiphova), 167
assimitis (Hatidamia), 104
Astatus, 28
atorrima (Phymatocera), 101
Athalia, $80 ; 53,55,70,81,82$
Athalilini, $80 ; 79$
Athetocephinae, 23
Atomostethus, 91
atra (Exura), 195 ; 196
atra (Tenthredo), 123; 122
attata (Arge), 33
ancupariae (Aglaostigma), 113
augur (Urocerus), $19,20: 18$
augur augur (Urocerus), ii
australis (Hermichroal), 153
austriaca (Tenihredopsis), 114
autumnalis (Apethymus), 95
baccarum (Pontania), 205
baltenta (Tenthredo), 123
balteatus (Pamphilius), I4; 13
baltica (Empria), 87; 86, 88
basalis basalis (Allantus), 94
basalis caledonicus (Allantus), $94 ; 03$
beaumonti (Tenthredo), 128
bergmanni (Nematus), 225, 230; 212, 224, 230
bergmanní (Nematus), 225
betulge (Pamphilius), 12
betulae (Prist tiphora), 163
betulae (Scolioneure), 107
betuleti (Scolioneura), 107
betuleti (Trichiosoma), 42
bicincta (Tenthredo), 122
bicinctus (Pamphilius), see hortorum bicinctus.
bicolor (Athalia), 81 ; 81
bifida (Fristiphora), 159
bilineatus (Nematinus), 154
biloba (Mesoneura), 155
bimaculatus (Dolerus), 65, 72; 62, 66, 73
bipartitus (Nematus), 218, 228; 220, 226, 234
bipunctata (Ardis), 102
biscolis (Pristiphora), 162, 167; 158, 166
blanda (Marcophya), 130
Blasticotoma, 24, 2, 35
Blasticomomidae, 34, 4, 28
Blonnocampa, 103; 6,53, 97, 99, 103, 104
Blennodampmae, 78 ; 52,54
Bremnocampint, 97; 80,97
borea (Pristiphora), $171 ; 188,170$
braccatus (Apethymus), 95
brachycesa (Eutomostethats), 100
Brachythops, 61; 51, 55, 55
breadalbanensis (Prigtiphora), 171; $168,1 \% 0$
brevis (EIoplocampa), 150
brevitansus (Dolerus), 71, 76; 68, 75
brevitarsus (Dolerus), iii
brevivalvis (Nematus), 225, 231; 21\%
bresivalvis (Nematus), 225
bridgmanii (Pontania), 204, 209; 200
brischkei (Croesus), 211
brullei (Priophorus), 142; 142
brunniventria (Ardis), 102
cadderensis (Nematus), 221, 228; 221, 229
Calameuta, 28: 24, 25
calceatus (Allantus), 93
calcicola (Pachynematus), 241 \& 231, 232, 235, 238, 240
calodonicus (Allantus), see basalis caledonicus.
caledonicus (Nematinus), 192; 193
californica (Pristiphora), 157
californicus (Urocerus), 19, 20
coliginosa (T'enthredopzis), 114
Caliroa, $96 ; 95$
Calmoint, 95 ; 52, 80
camelus (Xiphydria) 17
cameroni (Amauronematus), 185
campestris (Tenthredo), 122
campestris (Tenthredopsis), 114
Canponiscus, 153
canaliculatus (Amanronematus), 182
eandens (Abia), 39; 38
candidata (Empria), 87
capreae (Pachynemalus), 241
capreae (Pontanta), 204
carbonaria (Tenthredopsis), 114
carbonarius (Dolerus), 70
carinata (Pristjphora), $169 ; 168,170$
carinifrons (Pontanta), 201
carpini (Ametastegia), 91 ; 90
celtica (Tenthredo), v
centifoliae (Atholia), 83
Cephalcia, i
Cebrhalcitinae, 10
cephalotes (Megalodontes), 15
Cephidat, $23 ; 4,24$

Cephinam, 23
Ceffinint, $24 ; 23$
Cephoidea, 23 ; 4
Cephus, 26 ; 6, 24, 25
cerasi (Caliroa), 96
charmbersi (Pachynematus), 241 ; 238, 240
chambersi (Rhogogaster), $120 ; 118$, 119
chappeli (Dolerus), 67
chlorosoma (Rhogogaster), 121 ; 118, 120
chrysorrhoea (Hoplocampa), 152; 151
ciliaris (Arge), 33
Cimbex, 40 ; 3, 6, 35, 36, 37, 41
Ctmbictidae, $35 ; 7,29$
Cimbicinae, $39 ; 35,36$
Cimbicini, 40,37
cinctus (Allantus), $94 ; 93$
cinereipes (Eutomostethuts), 100
cinereipes (Melisandra), 60
cingulata (Strongylogaster), 58
cingulatus (Allantus), $94 ; 93$
cingulatus (Pamphilîus), 14
cingulum (Allantus), 93
cingulum (Tenthredo), 126
cinxia (Caliroa), 97
Cladardis, 103 ; 99
Cladiini, 139
Cladius, 141 ; 3, $7,51,52,140,141,142$
claripennis ('Tomostethus), see nigritus claripennis.
Clavellaria, 37
clibrichellus (Pachynematus), $236 ; 232$, 235, 236, 239
clibrichensis (Pachynematus), 236
clitellatus (Pachynematus), 241, 237 ; 232, 238, 240
coeruleopennis (Arge), 33
coeruleicarpa (Holcocneme), 222
coeruleocarpus (Nematus), 222, 228; $213,219,229$
coerulescens (Arge), 33
colibri (Athalia), 83
collactanea (Pontanicu), 206, 208
collinus (Nematus), 215
colon (Tenthredo), 124
columba (Tremex), ii
compressa (Pristiphora), 174; 175
compressicornis (Stauronematus), 155 ; 156
Conaspiditni, 109
conductus (Pachynematus), 234
confusa (Monophadnoides), 104
confusa (Pristiphora), 160, I64; 161, 165
coniceps (Pristiphora), 160,164 ; 161, 165
conjugata (Pristiphora), 163, 167; 163, 166
connata (Cimbex), 41 ; 41
consobrina (Sciapteryx), 117
consobrinus (Nematus), 216
contigua (Strongylogaster), 59, 57
coquebertii (Tenthredopsis), 116, 115 ; 113, 114
coracinus (Dolerus), 72; 63, 68, 71
coracinus (Dolerus), 70
cordata (Athalia), 83 ; 81, 82
cordata (Tenthredopsis), II4
coriacea (Pontania), 201, 209; 198, 199, 202
cornubiae (Athalia), 83; 82
coronatus (Aneugmenus), 60; 54
corpulentus (Pristiphora), 171
corticusus (Pachynenactus), 234
coryli (Allantus), 94; 93
coryli (Tenthredo), 124
Coryninat, 37 ; 35
Corynis, 37
costalis (Sciapteryx), 117
cothurnatus (Dolerus), 67, 74; 66, 73
crassa (Holcocneme), 222
crassicornis (Corynis), 37
crassicornis (Pristiphora), 160, 164; 161, 165
crassipes (Pontania), 203, 208: 198, $199,200,207$
crassus (Nematus), 222, 228 ; 213, 217, 220, 229
crataegi (Hoplocampa), 150 ; 151
crispus (Amauronematus), 185, 189 ; $181,186,188,291$
crocea (Hemichroa), 152, 153
croceus (Nematus), 219
Croesus, 209 ; 148
cultratns (Cephus), 27 ; 8
curtispina (Nematus), 225
cyaneus (Sirex), 21; 21
cyanocrocea (Arge), 32; 32
cyanocrocea syriaca (Arge), 32
cynosbati (Janus), 26
dalmatica (Aprosthema), 30
delicatulus (Stromboceros), 57
denudata (Pristiphora), 162, 164; 183
depressus (Pamphilius), 14
despectus (Pseudodineura), 155
destricta (Pontania), 201, 207; 198
destructor (Anoplonyx), 153; 153
diaphanus (Pachynematus), 237
Dicrostema, 101 ; 55, 97, 98
difformis (Cladius), 141 ; 140, 142
Dineura, 154 ; 144, $145,146,147,153$
Diprion, 45 ; 3, 43, 44
Diprionidae, 43 ; 29
Diprioninae, 43
dispar (Nematus), 225
dispar (Tenthredo), 123
distinguenda (Tenthredo), 126
dohrnii (Fenusa), 109
Doterinae, 52, 53
Dolerini, 61 ; 54
Dolerus, 64 ; $51,56,57,62,63,66,68$, 71, 73
dolichura (Pontania), 205, 209; 200, 207
dorsalis (Tenthredopsis), 114
dorsatus (Gilpinia), 46
dorsatus (Nematus), 218
dorsivittata (Tenthredopsis), 114
drewseni (Priophorus), 143
dromedarius (Xiphydria), 17
dryas (Rhogogaster), 121; 119, 120
dubius (Dolerus), 65
dubius (Eutomostethus), 100
duodecim-punctata (Macrophya), 130
duplex (Anoplonyx), 153
elegans (Tenthredopsis), 114
Elimora, 117; 111
elongatula (Cladardis), $103 ; 99$
elongatula (Tenthredo), 99
elongatus (Dolerus), 70
Emphytinat, $52,54,78$
Emphytint, 79,92
Emphytus, 90
Emprif, 85 ; 84, 86, 88, 89
Empritm, $84 ; 79$
Endelomyia, 96 ; 95
enodis (Arge), 33
enodis (Arge), 33
enslini (Pseudodineura), 155; 153
Entodecta, 106
ephippium (Eutomostethus), 100
equiseli (Ametastegia), 90
eradhatus (Priophorus), 143; 141
erichsonii (Pristiphora), 171
Eriocampa, $95 ; 71,96 ; \mathrm{v}$
Eriocampint, 95 ; 70, v
exythrocephala (Acantholyda), 10
Eutomostethus, 99 ; 6, 98
Euura, 194; 146, 149
eversmanni, 64; 62, 66, 73
excellens (Amauronematus), 185
excisa (Empria), $89 ; 86,87,88,89$
excisa (Tenthredopsis), 116, 114; 115
expansa (Arge), see fuscipes expansa.
exsectus (Pseulohemadaxonus), 57
fagi (Nematus), 218, 228
fagi (Tenthredo), 124
făhraei (Amawronematus), 222
făhraei (Nematus), 222; 217, 221
fallax (Amauronematus), 182; 178; 189
falonus (Pachynematus), 937
fantoma fantoma (Urocerus), ii
fasciata (Zaraea), 38
fasciatus (Amauronematus), 185, 189 : 181, 186, 188, 191
femoralis (Poniania), 205
femoralis (Strongylogaster), 58
femoralis (Tenthredopsis), 114
femorata (Cimbex), 40, 41; 41
femoratus (Janus), 26
Fenella, 109 ; 105, 106
fenestrata (Tenthredopsis), 114
Fenusa, 108 ; 53, 105, 106
Fenuselta, 107
Fenusinae, 79
Fenulini, 104 ; 52, 80
ferrugatus (Dolerus), 68, 74; 62, 66, 67, 73
ferruginea (Hoplocampa), 152
ferruginea (Tenthredo), 123
ferrugineas (Nematus), 222, 228; 213, 221, 229
filiceti (Blasticotoma), 35
flicis (Strongylogaster), 58 ; 57, 59
filiformis (Celameuta), 28
fissus (Dolerus), 71
flava (Hoplocampa), 152; 151
flava (Tenthredo), 122
Havens (Brachythops), 61
flaveola dominiquei (Elinora), 117
flaveola flaveola (Elinora), 117
flavescens (Nomatus), 218, 231; 221, 229
flavicornis (Tenthredo), 122
flavicornis (Trocerus), see gigas flavicornis.
flavipermis (Pachynemalus), 232
flawipes (Elinora), 117
flavipes (Euura), 204
Alaviventris (Neurotoma), 11
flaviventris (Pachynematus), 237
flaviventris (Pamphtius), 12
fletcheri (Amotastegia), 90
fletcheri (Empria), 87
fletcheri (Pristiphora), 160
forsiusi (Nematus), 213
frenalis (Nematus), 225, 231; 211, $212,213,224,230$
friesei (Tenthredopsis), 116; 113
friesei (Tenthredopsis), v
frutetorum (Gilpinia), 46, 47
fuliginosus (Stethomostus), 100
fulviceps (Terthredopsis), 114
fulvipes (Aglaostigrna), 113
fulvipes (Pristiphora), 150, 164; 158
fuluviventris (Dolerus), 67
fumiponnis (Pamphilius), 14
fumosus (Dolerus), 70
funereus (Stethomostus), 100
furcata (Sterictophora), 31
fürstenbergensis (Aneugmonus), 60
furvescens (Pristiphora), 175
fusctrima (Nematus), 218
fuscata (Pristiphora), see thalictri fuscata.
fuscipennis (Dolerus), see germanicus fuscipennis.
fuscipennis (Eutomestethus), 100
fuscipennis (Nematinus), 194
fuscipes expansa (Arge), 34
fuscipes fuseipes (Arge), 34
fuscomaculatus (Nematus), 223, 228 ; 212, 219
fuscula (Pseudodineura), 155 ; 153
gagathinus (Eutomostethus), 100
gallicola (Haplocampa), 204
gallicola (Pontania), 204
gei (Metallus), 107
gerninata (Sterictophora), 31
geniculata (Monophadnoides), 104
geniculata (Pristiphora), 158, 164
genistae (Rhogogaster), 120; 118
germanicus fuscipennis (Dolerus), 67 ; 65
germanicus germanicus (Dolerus), 67, $74 ; 66,73$
gessneri (Dolerus), 66, 72; 66, 73
gibberosa (Tenthredopsis), 114
gibbosa (Aglaostigma), 113
gigas flavieornis (Urocerus), 20; 20
gigas gigas (Urocerus), 19, 20; 18
gigas taiganus (Urocerus), 19,$20 ; 18$
Gilpinias, 45; 43, 44
gilvipes (Dolerue), see pratorum gilvipes.
glabrata (Ameiastegia), 91, 90
glabricollis (Athalia), 81
glauca (Pristiphora), 174; 175
glaucopis (Messa), 108
glenelgensis (Amauronematus), 178
glottianus (Ametastegia), 90. 91
glothionus (Nematus), 222
glutinosae (Nematus), 225
gonager (Dolerus), 69, 74; 68, 75
gracilicornis (Arge), 33 ; 30
gracilicarnis (Dicrostema), $101 ; 98$
gracilicornis (Selandria), 98, 101
graminis (Pachynematus), 234
grönblomi (Pristiphora), 171
grossulariae (Ametastegia), 91
gudtata (Empria), 88
gyllonhali (Pamphilius), 12 ; 13
gynandromorpha (Tenthredopsis), 114
haematoden (Dolerus), 69, 76 ; 68, 75
haematopus (Macrophya), I29
Helidamia, 104 ; 99
Harpiphorns, 85; 84
harrisoni (Pontania), 205, 208
Hartigia, $25 ; 23,24,25$
Hartigimi, $25 ; 23$
harwoodi (Dolerus), 70, 76 ; 68, 71, 75
Hemichroa, $152 ; 6,145,146,153$
Heptamelini, 57 ; 52,54
Heptamelus, 57 ; 51, 54
herbaceas (Pontania), 203
hercyniae (Gilpinia), 46, 47 ; 43
Hemerafthrlanae, 77; 52, 54, 57
Heterarthrus, $77 ; 6,53,78$
hibernicus (Pristiphora), 157
histrio (Amauronematus), 178, 189;
$178,180,182,183,188,190$
histrio (Pemphilius), 12 ; 13
Hoplocampa, 159 ; 6, 52, 145, 146
hortorum bicinctus (Pamphilius), 14
hortorum hortorum (Pamphilius), 14
hortulana (Messa), 108
humeralis (Amauxonematus), 186 ; 181, 186, 188, 191
humeralis (Amanronematus), 182
hyalena (Rhadinocerciea), 101
hyalinus (Paracharactus), 101
Hylotoma, 31
hyperborea (Pristiphora), 167
hypoxanthus (Nematus), 223, 231; 219,230

2diola (Pristiphora), 162
ignobilis (Tenthredopsis), 114
imfumata (Athalia), see lugens im. fumata.
immersa (Empria), 87 ; 86, 89
imperfectus (Amatwonematus), 185
imperfectus (Pachynematus), 233;232, 233, 236, 240
inanitus (Pamphilius), 14; 13
incompletus (Nematus), 223, 228; 217, 224, 228
inormatus (Tenthredopois), 114
intermedius (Doterus), 71
interstitialis (Pontania), 205
ischnocerus (Pontania), 205
Janus, 26; 23, 24
japonica, (Dicrostema), 101
japonicus (Neotomostethue), 101
jugicola (Nematus), 216, 228; 214, 218,227
julii (Xyela), $9 ; 8$
juniperi (Monoctenus), 44
jurinae (Corynis), 37
juvenous (Sirex), 21 ; 18, 21
klugii (Empria), 88
klugit (Megalodontes), 15
lachlaniana (Tenthredo), 123
laevifrons (Priophorus), 143; 141, 144
lapponica (Pontania), 203
laricis (Pristiphora), 160, 164; 156, 161, 165, 166
laterale (Trichiosoma), 42
lateralis (Aglaostigma), 113
lateritius (Dolerus), 67
latifrons (Pamphilius), 12; 18
latipes (Croesus), 211
lativentris (Pristiphora), 169; 168, 170
latreillei (Trichiosoma), 42
Labrentia, 113
leionotus (Nematus), 222, 000; 217, 221
lepidus (Harpiphorus), 85
Leptocercus, 153
leuoapsis (Pontania), 201, 207; 198, 200
leucogaster (Pachynematus), 234
leucolaenus (Amauronematus), 182, 187; 183, 190
leucosticta (Pontania), 200, 209 ; 198. 202
leucostigmus (Pontania), 201
leucotrochus (Nematus), 216, 228; 213, 219, 227
liberta (Athalia), 83; 81, 82
Thimarina (Calitroa), 90
linearis (Hartigis), 26
lineata (Strongylogaster), 58 ; 59
lineolata (Athalia), 83 ; 81, 82
lineolata (Periclista), 102
liogaster (Dolerus), 69, 74; 68, iii
litterata (Tenthredopsis), 116, 115; 114, 115
liturata (Empria), 90; 88
livida (Tenthredo), 123
Lividiventris (Tenthredopsis), 114
Loderns, 63 ; 56, 57, 82, 66, 73
longicornis (Empria), 90
lonicerae (Zaraea), 39; 38
lonicarae (Zarcea), 39
longiserra (Amauronematus), 176, 189 ; 180, 183, 190
Lophyrus, 43
lucida (Holcocneme), 214
lucidus (Nematus), 214, 227; 215, 215, 226
lucorum (Trichiosoma), 42
lugens lugens (Athalie), 83; 80
lugens imfumate (Athalia), 83
Iugens proxima (Athalia), 83
luridiventris (Platycampus), 164
lutea (Cimbex), 40, $41: 41$
Inteipes (Janus), 26
luteiventris (Eutomostethus), 100
luteola (Monostegia), 85
luteus (Nematinus), 194; 193
Lyda, 10
Lyqacorиematus, 156; 147
Macrocephus, 25
Macrophya, 192 ; 6, 52, 110, 111
Macrophyiar, 128; 100
macula (Strongylogaster), 59 ; 59
maculata (Tenthredo), 122
maculiger (Nematus), 223.
madicus (Dolerus), 67, 74; 66, 73
madidus var. schultessi (Dolerus) 67
mandibularis (Neurotoma), Il
mandibularis (Tenthredo), 122
marginella (Tenthredo), 127
marginellus (Tenthredo), 127
maluekiei (Anauronemalus), 185
medullarius (Etwa), 195
Megalodontes, 15 ; 5, 6
Megalodontidae, 15 ; 4, 6, 9
Megalodontoidfa, 9; 4
megapterus (Dolerus), 70, 77; 68, 71, 75
melanarius (Allantus), 94
melanarius (Allantus), 93
melanaspis (Nematus), 223, 228; 219, 226
melanocarpa (Pristiphora), 160, 164: 161, 166
melanocephala (Perichista), 102
melanocephalus (Nematus), 215, 228;
215, 220, 226
melenocer wis (Sirex), 21
melanochroa (Arge), 34
melanopoda (Fenusa), 109
melanura (Aprosthema), 31
Melisandra, 60 ; 55, 56
mescmelas (Tenthredo), 125; 122, 124, 125
Mesmena, 154; 145, 146, 153
Messn, 107; 106
metallica (Arge), 34
Metallus, 106 ; 105
micans (Eutomostethus), 100
mieans (Rhadinoceraea), 101
microcophala (Tenthredopsis), 114
microcephalus (Heterarthrus), 78, 78
Microdiprion, 44 ; 43
Micronematus, 156 ; 147
miliaris (Nematus), 210, 228; 213. 217,281
milhonotus (Amauronematus), 179, 189; 180, 184
minuta (Hoplocampa), 152
mioceras (Tenthredo), $123 ; 125$
mixta (Strongylogaster), 58 ; 59
mixtus (Strongglogaster), 59
moerens (Pachynematus), 237; 236, 239
moesta (Pristiphora), 157; 166
mollis (Pristiphorn), $169 ; 183,176$
moniliata (Tenthredo), 123
monilicornis (Fenella), iv
Monocteninae, 44
Monoctenus, 44; 3
monogyniae (Pristiphora), 157; 156, 158, 166
Monophadnoides, 103; 97, 99
Monophadnus, 101; 98, 103
Monosoma, 85 ; 84
Monostegia, 85; 84, 83
montana (Macrophya), 130
montanue (Pachynematue), 233 ; 233, 286, 240
monticola (Nematus), 218, 228; 220
morio (Melisandra), 61
mucronata (Euura), $195 ; 196$
mundus (Amauronematus), 179, 192 $130,183,188,190$
myosolidis (Nematus), 217, 228; 213, 220, 226
nana (Messa), 107
nassata (Tenthredopsis), 116; 113, 114, 115
neglecta (Macroplya), 131
Nematigate 139; 52,53
Nematini, le3; 139
Nematinus, 192 ; 149
Nematue, $211 ; 5,52,121,144,146$, 147. 148
nemoralis (Acontholyda), 11
nemoratus (Heterarthrus), 77

Neodiprion, 44; 43
Neurotoma, $11 ; 5,8,10$
niger (Dolerus), 70,76; 68, 75
niger (Trachelus), 28
nigra (Hartigia), 25
nigratus (Dolerus), 71, 76; 68,75
nigriceps (Tenthredopsis), 114
nigricolle (Porcilosoma), 96
nugrioollis (Tenthredopsis), 114
nigricornis (Nematue), 222, 228; 217. 213, 229
nigucornis (Pamplilius), 12
nigricornis (Zaraea), 39
nigrinus (Cephus), 27; 24
nigripes (Arge), 33 ; 30
nigripes (Pareophora), 103
nigrita (Fenella), 109
nigritarsis (Euura), 195
nigritus claripennis (Tomostethas), 90
nigritus nigritus (Tomostethus), 99
migrolineatus (Pontania), 201
nigronotata (Pachyprotasis), 128
neigronotata (Tenthredopsis), 114
nigrostematus (Nematimus), 192
nitens (Dolerus), 70, 76; 63, 71, 72
nitens (Dolerus), 70
noctilio (Sirex), 21; 21
nubium (Nematus), 211,226 ; 215
obductus (Pachynematus), 234; 235, 238, 239
obductus (Pristiphora), 162
oblongus (Dolerus), 70
oblongus (Pristiphora), 160
obscura (Corynis), 37
obsolete (Tenthredo), 125
ochroleucus (Heptamelus), 57
ochropoda (Hererarthrus), 77
ochropus (Arge), 32
olfaciens (Nematus), 216, $228 ; 212,219$ 227
oligospilus (Nematus), 225, 231; 214, 221, 230
olivacea (Tenthredo), 124; 119, 122
omissa (Tenthredo), 127
omissus (Tonthredo), 127
opaca (Mesoneura), 155
orbitalis (Nemolus), 223
ornata (Tenthredopsis), 114
Orussidate, 22; 3
Orussomdea, 22; 3
Orussus, 22
ovata (Eriocampa), 95
Pachylostictinae, 30 б̆
Pachynematus, 231 ; 144, I49
Pachyprotasis, $128 ; 6,110$
pachyvaluis (Pristiphora), 169
padi (Aneugmenus), 60
padi (Priophorus), 143
paedida (Pristiphora), 162, 167
pagana pagana (Argo), 32
pagana stephensii (Arge), 32

Palaecimbex, 40
pallescens (Monophadnus), 101
palliatus (Nematus), 223
pallida (Culpinia), 46, 47
pallidiventris (Pristiphora), 162
pallipes (Arnetastegia), 91; 90
pallipes (Calameuta), 28
pallipes (Microdiprion), 44
pallipes (Pamphilius), 14
pallipes (Priophorus), 143 ; 140, 141, 142
pallipes (Pristiphora), 160, 164; 161, 166
pallipes (Pristiphora), 169
pallinentris (Pachynematus), 234
palmata (Tenthedopsis), 114.
palmatus (Loderus), 64
pelastris (Dolerus), 67
Pampitlitidae, 9; 6
Pamphilinafe, 11; 10
Prmphilius, 11 : 5, 8, 10, 13
Paracharactus, 101
Pareophora, 102; 05
Parna, 106; 105
parvula (Empria), 88
Paururus, 20
pavidus (Nematus), 216, 228; 215, 219, 226
pectinicornis (Cladius), $141 ; 140,142$
pectoralis (Hoplocsmpa), 152 ; 151
pedunculi (Pontania), 205, 208; 200, 203
Pelmatopus, 155; 145
pentandrae (Euura), 195
Pregidae, 29, 51
Periclista, $102 ; 97,98$
Perineura, 112; 111
Perineutrint, 112
perkinsi (Amauronematus), 185
perkinsi (Tenthredo), 128; 127
perkinsi (Tenthredo), vi
porla (Ametastegia), 01
phthesicus (Calameuta), 28
phylicifoliae (Pontania), 206
Phylloectus, 25
Phyllotoma, 77
Phyllotominaf, 52, 54, 57, 77
Phyllotomini, 77
Phymatocera, $100 ; 98$
picipes (Dolerus), 71,76; 88,75
picta (Rhogogaster), 120; 118
picticeps (Tenthredopsis), 114
Pikonems, 231
pilicornis (Priophorus), 143; 140, 141, 142, 144
piliserra (Amauronematus), 185
piliserra (Pontanid), 197, 206; 199, 200, 202, 208
piliserra (Xyelatana), 9; 8
pilosulus (Cephus), 27
pilosulus (Cephus), 27
pilosus (Nematinus), see willigkiae pilosus
pini (Diprion), 45; 45
pini (Pristiphora), 174
pinivora (Acantholyda), 11
plagiata (Hoplocampa), 150; 151
plagiocephala (Megalodontes), 15
Platycampus, 153 ; 145,146
plewralis (Pachynematus), 237
poecilonotus (Nematrus), 223
Poecilosoma, 85
Poecilostoma, 85
polaris (Pontania), 203
polyspilus (Nematus), 225, 212 ; 224
polyioma (Gilpinia), 46
ponojense (Nematus), 225, 231; 211, 213, 224
Pontania, 197; 149
possilensis (Dolerus), 70 ; 68, 71
posticalis (Aoantholyda), 11
pratensis (Dolerus), 65, 72 ; 62, 66, 73
pratensis (Dalerus), 67
pratorum gilvipes (Loderus), 64
pretorum pratorurr (Loderus), 64; 62, 66, 73
Priophorus, 141; 140, 142, 144, 146
Pristiphora, $156 ; 146,147$
Perstolini, 139
Profenuse, $108 ; 105,106$
prolongata (Xiphydria), 17; 22
Protemphytus, 90
proxima (Athalia), see lugens proxima
proxima (Pontania), 204, 200; 199, 200
pruni (Pareophora), 103
Pseadoclavellaria, 37
pseudocoactala (Pristiphora), 169 ;
Psoudadineura, $155 ; 145,146$
Pseudohemitaxonus, 57 ; 56
Pseudotaxonus, 56, 57
pubescens (Pachynematus), 236
pubescens (Periclista), 102
puella (Pontania), 198, 206 ; 199, 208
pulchellus (Nematus), 223
pulverata (Monosoma), 85
pumila (Empria), 87
pumila (Fenusa), 109
pumitio (Metallus), 107
pumilus (Metallus), 107
punctatis (Entomostethus), 100; 101
puncticeps (Monophadnoides), 104
puncticollis (Dolerus), 69, 74; 68, 75
punctifrons (Pristiphora), 162, 167; 158,166
punctulata (Rhogogaster), 120
punctum-album (Macrophya), 120
puniceus (Amauronematus), 183, 189; 181, 186, 188, 191
purpureae (Pontania), 201, 209: 199, 200, 202, 208
pusilla (Blennocampa), 103
pusilla (Fenusa), 109
pusillus (Cepliuss), 27
pustulator (Pontania), 203, 209; 200
pygmaea (Profenusa), 108; 105, 106
pygmaeus (Cephus), 28 ; 8, 24
quadricinctus (Tenthredo), 126
quadriranculata (Palaeocimbex), 40
quercus (Messa), 107
quercus (Pristiphora), 162, 164; 163, $16 B$
rapae (Pachyprotasis), 129
reticulatus (Nematus), 213, 226; 182,
$184,189,191,206,209,211,212$
retusa (Pristiphora), 157 ; 158
rex (Amauronematus), 184
Rhadinoceraea, $101 ; 6,97,98$
Rhipidiocerus, 15
Rhogogaster, 118 ; 111, 112, 113, 119, 124
ribesii (Nematus), 216, 227; 212, 213, 215, 219, 227
ribis (Macrophya), 130
robbinsi (Pontania), 205
robinson (Phymatocera), 101
rosae (Arge), 32
rosae (Athalia), $83: 80$
rosae (Altalia), 83
rosae (Endelomyia), 96
rossii (Tenthredo), 125
rubi (Perineura), 113
ruficapillus (Nematinus), 194
ruficruris (Monophadnoides), 103
rufipes (Macrophya), 129
ruffpes (Prophorus), 143
rufiventris (Tenthredo), 123
rufocinctus (Allantus), 93
rugomilue (Dolerus), 71
rumicis (Pachynematus), 234; 231, 232, 233, 239
rustica (Arge), 33
rustica (Mcerophya), 130
rutilicomis (Hoplocampa), 152, 151
saamineni (Amauranematus), 182
sagmerius (Amauronematus), 179; 180, 184. 139
saliceti (Euwta), 195
salicis (Nematus), 215, 228; 215, 220, 226
salicis-cinereae (F ontamia), 205
saltuum (Nourotoma), 11
samolad (Pontania), 206
sanguinicollis (Dolerus), 70; 68,75
sanguinicollis (Dolerus) var. fumosus, 70
satyrus (Hartigia), 25
saundersi (Tenthredopsis), 114
saxatilis (Dolesus), iii
saxatilis scotions (Dolerus), 65, 72; 66,73
saxesenii (Prisiphora), 171, 174; 172, 173, 175
scalaris (Rhogogaster), 121
salesit (Trichiosoma), 42
schaefferi (Tenthredo), 128, vi
Schizocera, 31
schultessi (Dolerus), see madidus var. schultessi
Sciaptergyini, $116 ; 110,111$
Sciapteryx, 116; 110, 111
Scolioneura, 107; 105, 106
scotaspis (Pontania), 197, 206; 208
scotica (Tenthredo), 123
scoticus (Dolerus), see saxatilis scoticus
scoticus (Pristiphora), 169
scrophulariae (Tenthredo), 126
scutellariae (Athalia), 82; 81
scutellaris (Tenthredopsis), 114
scutellatus (Pashynematus), 233; 232,
233, 236, 240
segmentarius (Nenatus), 223
Selandria, 61 ; 55, 56, 60, 98
selandriâformis (Mesoneura), 155
Selandminae, 54; 51, 52, 53, 78
Selandrinm, $61 ; 54$
semilacteus (Amauronematus), 187
septentrionalis (Croesus), 211; 200, 210
sericans (Claderdis), 103
sericea (Abia), 39 ; 38
serotinus (Apethymus), 95
sertifer (Neodiprion), 45
serva (Salandria), 61 ; 59
sharpi (Pontania), 200
sharpi (Pseudohemitaxonus), 57
similator (Nematus), 218
simile (Diprion), $45 ; 45$
similis (Nemahus), 215
simulans (Pachyprotasis), 129
Sioblifi, 109
Sirex, $20 ; 6,16,18,19,21$
Siricidate, $17 ; 4,7,16$
Sieicomea, $15 ; 7$
sixii (Selandria.), 61 ; 59
smithiae (Pachynematus), 237; 236, 239
solitaria (Tenthredo), 124
solitaria (Tenthredo), 124
sorbi (Trichiosoma), 42
sordida (Tenthredopsis), 114
soror (Sciapteryx), 117
spectrum (Xeris), 22
spinarum (Athalia), 83
spirasae (Nematus), 223 ; 215, 219
spissicornis (Megalodontes), 25
spreta (Tenthredopsis), 114
staudingeri (Pristiphora), 167; 168, 170
Stauronema, 155; 147
Stauronematus, 155 ; 145, 147
stellata (Acantholyda), 11
stephensii (Arge), see pagana stephensii
Sterictophora, $31 ; 2,28,30$
Sterictophorinae, $30 ; 29$
Stethomostus, 100 ; 98
stichi (Nematus), 218, 281 ; 221, 229
stilata (Dineura), lŏ4
stramineipes (Aneugmenus), 60
stramineipes (Pamphilius), 13
Stromboceros, 57 ; 55, 56

Strongylogaster, 57 ; 6, 51, 55, 56, 58
strongylogaster (Nematus), 223
Strongylogastrint, 57 : 54.
suadus (Pachynematus), 237
subarctica (Pristiphora), 172, 174; 172, 173, 174
subbiñda (Pristiphora), 163; 163
subcana (Monophadnoides), 104
submutica (Empria), 90
subserrata (Monophadnoides), 104
sulcata (Ardis), 102
sulcatus (Pachynematus), 241, 239 ; 238, 240
sylvarum (Cimbex), 40
sylvarum (Pamphilius), 12; 13
sylvaticus (Pamphilius), 15
Synaerema, 112
Syntexidae, 16
syriaca (Arge), see cyanocrocea syriaca
tabidus (Trachelus), 28
taeniatus (Amauronematus), 187; 181, 186, 189
taeniatus (Dolerus), 60, 72; 66
taiganus (Urocerus), see gigas taiganus
tardigradus (Urocerus), ii
Taxonus, $92 ; 90$
temporalis (Aneugmenus), 60
temula (Tenthredo), 122
temula (Tenthredo), v
tenella (Parna), 106
tener (Priophorus), 142
Tenthredella, 112, 121
Tentaredinidae, $51 ; 4,7,29$
Tenthredininae, $109 ; 53$
Tenthredinini, $118 ; 109$
Tenthredinomea, 28 ; 4, 7
Tenthredo, $121 ; 3,5,6,109,111,112$, 117, 118
Tenthredopsint, 113; 112
Tenthredopsis, 113; 52, 112
tenuicornis (Monophadnoides), 104
tenula (Tenthredo), 125
testacea (Pristiphora), 113, 167; 163, 166
testaceipes (Dineura), 154
testaceipes (Endelomyia), 96
testaceipes (Euura), 197
trestudinea (Hoplocampa), 150; 151
thalictri fuscata (Pristiphora), 159 , 164; 158, 166
thomsonit (Pachynematus), 236
thomsoni (Profenusa), 108
thornieyn (Tenthredopsis), 114
Thrinax, 56, 57
tibiale (Trichiosoma), 42
tibialis (Apethymus), 95
tibialis (Nematus), 223; 220
tillbergi (Amauronematus), 184, 187; 186
tinctipennis (Doterus), 65
togatus (Allantus), 93
Tomostethus, 99; 53, 55, 98

Trachelus, 20 ; 28
troumarni (Amauronematus), 185, 192; 181, 186, 188, 191
Tremex, i
triandmae (Pontania), 204, 200: 207
Trichiocampus, 143 ; 140, 141, 142
Trichiosoma, 41; 35, 35,37,40
Triohiosomini, 41:37
tricintus (Tenthredo), 127
tridens (Empria), 00 ; 88, 88, 89
triplicatus (Dolerus), 67, 74; 66, 73
thisignatus (Fachynemattis), 241
iristior (Tenthredopsī̀s), 114
tristis (Tenthredopsis), 114
troglodyta (Trachelus), 25
tromsoensis (Pristiphora), 171
truncatios (Allantus), 93
truncatus (Pُachynematus), 241, 237; 236, 249
tuberculata (Pontania), 205, $209 ; 188$, 200, 207
tumicatus (Amanionematus), 187; 181, 184
turgiaus (Packynamatus), 237
ulmi (Fenusa), 109
ulmi (Priophorus), 143; 142
umbratus (Nomatus), 215, 228; 214, 215, 219, 285
umbripennis (Fachynematus), 237
wndulata (Emprza), 00
Urocerus, 19, 16; 18
ustulata (Arge), 84
vacciniellus (Pontania), 206
vafer (Paraphilius), 14; 13
vajer (Pamphilius), 14
vagans (Ieterarthrus), 78; 78
vagus (Pachynematus), 234 ; 235, 236, 238
variegatus (Gupinid), 46
variegatas (Pachyprotasis), 129
vapipes (Caliroa), 97
variepinus (Doleruts), 71
varius (Pamphilius), 14: 13
varus (Croesus), $211 ; 210$
velox (Tenthredo), 123
venusta (Tuura), 197; 193
verna (Mesoneura), 155
vesicator (Pontania), 203, 209; 200
vespa (Tenthredo), 127
vestigialis (Lodorus), 64; 62, 66, 73
vidua (Tenthredo), 125
viduatus (Amauronematus), 181, 187; $180,183,188,190$
viminalis (Pontaria), 205, 208; 198, 199, 200
viminalis (Trichiocarmpus), 143; 140 , 142
virens (Gilpinie), 46, 47
whens (Gilpinia), 46
viridana (Pristiphora), 162
viridescens (Nematus), 223 ; 224
virididorsata (Dinoura), 154; 153
viridis (Nematus), 225,231 ; 214, 224, 230
viridis (Rhogogaster), 121; 118, 119, 120
viteilinae (Trichiosoma), 42
vittatus (Amowronematus), 185
vollenhovent (Pontania), 200
waldheimii (Monophadnoides), 104
wesmaeli (Pristiphora), 174; 172, 173,
175
westwoadi (Fenusa), 109
willigliae (Nematinus), 194; 193
willigkiae pilosus (Nematinus), 194
wistneii (Brachythops), 61
xanthoceros (Strongylogaster), 58
xanthocarpus (Pachynematus), 241,
239 ; 232, 235, 238, 240
xanthogaster (Pontania), 197
xanthostoma (Hartigia), 26
Xeris, 22 ; 6, 19
Xiphydria, 17; 3,16
Xiphydrimate, 16 ; 7
Xyela, 9 ; 2, 5, B, $_{\text {, }}$
Xyelatana, 9
Xyelidat, 7 ; 4, 8
Xyelinae, 8
Xyeloidea, 7 ; 4
yalzonensis (Dolerus), iii
zaddachi (Pachynematus), 237
Zarmea, 38; 37, 38
Zaraminis $38 ; 37$
zona (Tenthredo), 126

Supplement to Section (a).

Page 1, line 4, for " four " read " three ".
line 11, delete " (d) Larvae ; foodplant and other indexes."
Page 2, line 8 up, after ". . . independently." insert "For a recent study of European sawfly larvae together with keys to genera and species and with host plant lists see Merbert Lorenz and Manfred Kraus "Die Larvalsystematik der Blattwespen" Abh. Larvalsyst. Insekt. 1, viii +340 pp., 435 figs."
Page 10, lines $8-9$, delete: "front tibia with a pre-apical spine ... spurs."
" line 10 , delete: " 2 spp."
" line 11, for "Acantholyda A. Costa " read " 1a."
, after couplet 1 add :
" 1 Front tibia with a pre-apical spine on its inner side in addition to the apical spurs. On Pinus. 2 spp.................................antholyda A. Costa
"- Front tibia without any preapical spine. On Larix. l sp.
Cephalcla Jurine."
Page 11, before "Subfamily Pampmuinate" add: " Genus Cephalbia Jurine.
"Larvae live in webs on Larix, Abies and Picea.
"Of the 35 world species five or six are found in Europe and in recent years one has become established in Britain.
"Mainly black spocies with white flecks on head and mesonotum, and brownish underside to the abdomen. $10-11 \mathrm{~mm}$.
"Lava solitary in silken tubes on Larix. First found in 1954, Berks.: Wybhom Woods (\dagger J. B. Gurdon, 1954, Ent, mon. Mag. $90: 234$ as C. falleni Dalman), more tecently at Alice Holt, in the plantations of the Forestry Commission, at Wrecolesham, Fornham, Surrey, where it has been reated from larvae. V-VI. Europe................................ $\boldsymbol{\theta}$ 우 alpina (Klug)."

Page 12, line 7, add " and Wales: Radnor, 1053, R. B. B.". " line 21 up, add "and Inverness (Aviemore, 1952, R. B. B.)." ," line 14 up, aftor " Deds." add "Yorks.".
Page 17, line 17, add "Somerset".
Page 18, under "Key to British Genera of Siricidae" before couplet 1 add :
" la. Antemse filiform and long (longer than C + stigma of fore wing) and set close together (so that the distance between them is only about one and a half times as much as the distance of one from the nearest eye-margin). Eyes not more than one and a half times as broad as long. Labial palps 3 -segmented. Cerci present. Anai cell of fore wing contracted from about the middle. Atteched to Coniferous trees (Pinaceme) (Simictivae)........ I 1
"- Antennae slightly swollen in middle and short (shorter than $\mathrm{C}+$ stigma of fore wing) and set far apart (3 times as great as the distance from one of them to the nearest eye-margin). Eyes at least twice as broad as long. Labial palps 2 -segmented. Anal cell of fore wing contracted in basal third. Attached to Angiosperm trees. 1 sp . (Tremecinaf)

Page 19, lines 34-39, delete "Hind tibia...... \& augur augur (Klug) ". and add " 6 ".
Page 20, at end of key to "Females ", add another couplet:
" 6 Hind tibia with basal two-thirds black. Abdomen with at least tergites 3-7 and 9 bander with black above. Claws with large subapical tooth (longer than its basal breadth). Ovipositor as long as fore wing.
C. and S. E. Europe. Occasionally marodaced thto Britain in timber but not established heres, of. Stephens, 1835: 14, and Benson, 1938, Ent, mon. Mag. 74 : 255, as "Urocerus cedrorum Smith'
($=$ augur augur Klug) fantoma fantoma Fabricius
" - Hind tibia all yellow with at most the extreme apex brown. Abdomen mostly yellow above with only tergites 6 and 7 banded apically with black, and sometimes 4 and 5 with lateral spots. Claws with a minute subapical tooth not longer than its basal breadth. Ovipositor only about two-thirds as long ag fore wing.

Warwicks : Leamington Spa, Lillinglon, 1 9, vi. 1953, emerged from imported timber (W. T. Taylor). New British record. C. Europe and W. Siberia
(= fontoma Fabricius auctl. nec. Fab) tardigradus Cederhjelm."
Page 22, before " Superfamily ORUSSOIDEA", add:
" Genus Tremex Jurine.
" Of the nearly 20 world species, two are known in Europe. One introduced from N. America has been found in Britain.
" $15-40 \mathrm{~mm}$. long. if thorax infuscate brown; abdomen piceous with tergite 1 yellow and the following 6 each with a yellow band. Wings more or less infuscate. ot mainly piceous.
"Larva bores in Acer, Quercus, Ulmus, etc. Devon: Seaton, 1 ㅇ, emerged from wood of imported Ulmus thomasi Sorg., ix. 1957 (J. A. Richman), New British record. North American species...........columba (L.)."

Page 26, line 5, after " Hunts." add " Oxon., Middlesex and Beds.". line 6, add " New British record" ".
Page 27, line 8, add "Herts., Flaunden, 1957 (R. B. B.) ; Suffolk, Brandon, 1945 (R.B. B.) ".
Page 35, line 5, after " In Britain." add " up till 1953 ".
line 13 , after ". . . secured." add
"In 1953 discovered in Kew Gardens by Mr. A. H. Q. Alston: and Goldstitich Moss, Staffordshire by Mr. James Edwards at an altitude of 1100-1200 ft., between Leek and Buston, in a wild area where it must surely be a native species. In both these localities the larvae were boring in petioles of Athyrium folix. femina (L.) Roth. And from Goldstitch Moss the first British adults were obtained."

Page 41, line 4, add " Hunts., Holme Fen (W. E. Russell, 1954) ". line 5, for " W. Cork and S. Kerry" read " W. Cork north to W. Galway".

Supplement to Section (b).

Page 53, line 13 up, after " stigma " add " (except in Eriocampat ".
line 10 up, for " is crossed " read " is often crossed ".
Page 57, line 21, for " five " read " four".
line 31, add " Also Wales, Radnor and Ireland.".
Page 57, line 16 up , delete "Only 6 specimens ever recorded.".
," line 15 up, add "Berwicks., Earlstone, 1 电, v. 1890 (J. Clark)".
Page 58, line 10 up, delete " 5 " and add the second half of couplet 5 (4) from page 59 ending with " $\begin{gathered}A \\ \text { and } ? ~ m a c u l a ~(K l u g) ~ " . ~\end{gathered}$
Page 59, delete lines 1-9, being first half of couplet 5 (4).
Page 61, line 18, for "C. and N. Europe" read " Holarctic".
lines 27-28, for "C. and N. Europe" read " Holarctic ".
Page 64, line 6, after "Siberia" add "and N. America".
line 20, after " Siberia" add "Also N. America".
" lines 22-23, delete "E. of Lake Baikal . . . common there".
", line 36, after "Caucasus" add "and E. to N. America".
Page 65, line 4, for " saxatilis " read " yukionensis".
line 17, for "undescribed" read " on Juncus gerardii Lois".
line 29, after "Wicklow" add " Co. Cavan" and after " Yorks.," add "Cothill Bog, Berks.".
line 10 up, for " saxatilis Hartig " read " yukonensis Norton".
Page 68, fig. 199, for "brevi" read "lio".
bottom line, for "brevitarsus" read "liogaster".
Page 70, line 2, after "Scotland" add "Staffs.: Madeley and Hereford: Mocats Park (H. W. Daltry)".
" line 13, after "Harwood" add "Also found in Arran (W. D. Hincks, 1953) ".
" line 22, add "and N. America".
", line 29, for "Not yet recognized outside Britain" read "Finland".
line 24 up , after "Britain"" add " and Ireland"."
line 15 up, after " Britain" add " and Ireland".
" line 15 up, atter "Brimin" add" "
" line 12 up, after "south." add " also Japan and Kurile Is.".
Page 71, line 9, after " Britain" add " and Ireland".
line 15, after " Britain" add " and Ireland ".
", line 4 up, for "brevitarsus Hartig" read " liogaster Thomson iof. couplet 14) ".
line 5 up, delete and insert " 8 (=varispinus Harig, Cameron, rugulosus Dalla Torre and brevitarsus Hartig, Benson nec Hartig)".
Page 72, line 8 up, for "saxatilis Hartig" read " yukonensis Norton ".
Page 76, line 9 up, for "" brevitarsus Hartig" read "liogaster Thomson (cf. couplet 14)".
Page 79, line 6 , for " 34 "' read " 33 ," and for " 98 " read " 92 ".
" line 9 , for " 2 " read " 3 ".
", lines 20-32, omit whole couplet (cf. p. 109).

Page 83, line 13 up, fox "Larva untnown" read "Larva on Sedum album L." and delete " Only 4 早 British records known".
" line 12 up, before "Bucks." read " Dorset: Wimborne, 1954 (P. Harwood) ; I, of Wight, East Cowes, 1953 (J. W. Saunt) and Oxford, reared from larvae, 1956 (G. R. Gradwell)".
Page 85, line 29, add " and Glaux maritima L. ".
line 31, after " Kerry " add " and Cavan".
Page 91, line 21, add "and Salix ".
line 23, after "Herts." add " Beds.".
bottom line, delete " δ and " and add "Parthenogenetic species".
Page 94, line 6, after " Essex" add " and has found it at Wimborne, Dorset. Dr. Chambers has found it at Culworth, Beds., 1952 ".
Page 95, Transfer lines 17-33 ("Tribe Eriocampini") to p. 112, before "Tribe Perineurini ".
Page 100, line 21, after "England" add "from Radnor, Wales : ". line 13 up , add " (= geniculata Stephens) ".
", line 6 up, before "Somerset" add "Dorstt, Parley, 1953 (P. Harwood)".
Page 101, line 10, after "Caucasus" add "and Japan ".
line 12 up, after "Herts." add "and at Byton, Hereford, In Wales near Presteigne, Radnor, 1953 "
Page 102, line 18, after "England" add "and Wales".
line 20, after "Caucasus" add "and Japan".
Page 103, line 4 , up, for "Larva unknown" read "Larva on Rubus fructicosus
Page 104, line 5 up, after "Ireland" add "The very rare of has been found in S. Devon, at Mardon Common and Bagtor, Dartmoor, 1951-52 (L. H. Woollatt)".

Page 108, line 5, for " instead " read " also".
line 11 up, delete "Only hnown from 2 specimens " and add "Staffs:: Maer Woods, 1936 (H. W. Daltry) and Herts.: Bricket Woorl, 1950 (R. B. B.) ".
line 10 up, after "Germany" add "and N. America".
Page 109, lines 21-22, for "One species occurs in Britain ...," read "Two species occur in Britain, one of them
, line 25 , for "the species is . . . " read " the species are . . ."
" line 25, et seq. after ". . . parthenogenetic." insert the following :
"A. \quad o antenne $13-16$-segmented, at least twice as long as breadth of head. Basal sector of M in fore wing almost angled at base, then straight in apical twothirds. Antennal segments $3: 4$ as $1-2: 1$.
" Mines in leaves of ? Geranium sylvaticum L. etc. Scotland: Inverness., Kincraig, 2 ㅇ, v.1952, and England: Yorks., near Austwick, 3 9, ni. 1955 (R. B. B) (\dagger Berson, 1952, Proc. R. ent. Soc. Lond. (B) $22:$ 136-8). Mines in leaves of Geraniam sylvaticum found by L. Parnenter in Glen Lyon, Perths., vil.1955, may belong to the same species. Norway, Sweden and Suitzerland
\& monilicornis Dahlbom
"B. O antenna 11-12-segmented, less than one and a half times breadth of head. Basal sector of M in fore wing areuate throughout, though more strongly at base. Antennal segments 3:4 as 1-6:1."
(Biological data as before.)

Page 109, line 5 up , under "Kfy. to Genera of Tenthredininae" insert another couplet thus:
" la Anal cell of fore wing either mediaily constricted or with short ercet cross. vein and M joins $\mathrm{Sc}+\mathrm{R}$ about as far from junction of $\mathrm{Rs}+\mathrm{M}$ as $\mathrm{Re}+\mathrm{M}$ is from base of stigma (figs. 137-8)
"- Anal cell of fore wing with oblique eross-vein and M joins $S c+R$ much closer to junction of Rs + M than distance between Rs $+M$ and base of stiguna (cf. figs. 142-3)."

Insert here lines $20-32$ from page 79 but ending :
". . . 1 species. (Eriocampini) Eriocampa Hartig, p. 112."
Page 112, Before "Tribe Perineurini" insert "Tribe Eriocampini . . " (lines 17-33 from p. 95).
Page 115, line 10 up , for ". . . 4" read ". . . nassata L." and eliminate couplet 4 (3) continued on to page 116.
Page 116, line 17 up, for " q friesei Konow" read "form of q nassata L.".
Page 117, line 12 up, for "only 3 " read "very few".
line 11 up, before " Surrey" add " Berls.: Silwood Park, vi. 1953 (A. Woods), vi. 1954 (J. C. Felton) and Cothill Bog, vi. 1956 (K. G. V. Smith)".
line 7 up, for " f . flaveola" read " flaveola" and delete "The two were".
line 6 up , delete " considered to be distinct species but . . .".
line 4 up, delete " flaveola".
line 3 up, for "E. flaveola flaveola "read E. fiaveola".
line 2 up, after " occur." add "For differences between these two species see Benson, 1904 (Bull. Brit. Mus. (Nat. Hist.) (Ent.), 3 (7) : 285).".
bottom line, delete "flaveola L." and "flaveola".
Page 122, line 21, for "Larva unknown" read "Larva on Gramineae (Calamagrostis epigejos (L.) Roth. and Dactylis glomerata L.".
Page 122, line 34, for " All Europe and eastwards to E. Siberia " read
"T. celtica Benson (1953, Ent. mon. Mag. 89 : 275-7) forms with T. temula Scopoli an Atlantic-continental species pair and replaces it in the British Isles, Spain and Italy; T. temula occurs throughout the rest of temperate Eurape and Siberia to E. Asia. T. celtica is mare extensively morked with yellow at the apess of the abdomen than temula and has a more prominently convex scutellum, forming almost a right angle in profle."
line 35 after " . . . nec L." add " temula Seopoli Brit. auctt. nec Scopoli" and for "temula Scopoli" read "celtica Benson".
Page 123, line 24, add " Antenna occasionally all black ".
", line 5 up, after " Westmorland" add " Occurs also in Staffordshire and Northants.".
Page 124, line 5, for " Dumfries" read "Midlothian".
Page 125, line 2, add "and N. Korea".
line 19 up, add "Ranunculus repens L. and Senecio fuchsii Gmelin.".
Page 127, line 20 up, insert " δ with brush beneath hind tarsus brown.".
line 16 up, insert " δ with brush beneath hind tarsus black at least on inner side.".

Page 128, top line, for " Larva unknown" read "Larva on Lotus corniculatus L.".
Page 128, line 10, before "Larva . . ." insert " Presumed now to be only a colour variant of the following species.".
line 13, before " perkinsi (Morice)" insert" schaefferi ab.".
Page 129, top line, after " Scrophularia" add " Antirrhinum ".
Page 130, line 28 , for " $8-10 \mathrm{~mm}$." read " $7-10 \mathrm{~mm}$.".
line 34 , for " $10-11 \mathrm{~mm}$." read $8-11 \mathrm{~mm}$.".

The Royal Entomological Society of London is a scientific Sooiety founded in 1833 and incorporated by Royal Charter in 1885 for the improvement and diffusion of Entomological Science exclusively.

The principal Publications of the Society are the following:
TRANSACTIONS. Papers published in the Transactions are issued separately and separately priced. One volume is issued every year, sometimes two. Annual Subscription $£ 10 \mathrm{IO}$.
PROCEEDINGS: Series A. Contains short papers on general entomology. Four parts are issued annually at a subsoription price of $£ 28$ s:
PROCEEDINGS: Series B. Consists exclusively of short papers on systematic entomology. Six parts are issued each year at a subseription price of $£ 28 \mathrm{~s}$.
PROCEEDINGS: Series C. Contains the minutes of meetings, list of Fellows, Presidential Addresses, ete. A part is issued before each meeting as an Agenda paper. The annual subsoription price is $£ 14 \mathrm{~s}$.
The above are issued free to Fellows on publication. Further copies can be obtained by Fellows on special terms.

Other publications issued by the Society, in addition to the Handbooks (for particulars of which see p. ii of cover), are the following :

The Generic Names of British Insects. Nine parts so far published, covering the Rhopalocera, Odonata, Neuroptera, Hymenoptera Aculeata, Carabidae, Hydradephaga, Hemiptera-Heteroptera, and Staphylinidae.

Stylops: A Journal of Taxonomic Entomology. 1932-1935, Vols. 1-4 (all issued). $£ 2$ 3s. per Vol.

Huibner: A bibliographical and systematic account of the entomological works of Jacob Hübnet and the supplements theteto. By Francis Hemming, 2 Vols., £2 10s.

The Centenary History of the Society. 10s. 6d.
Communications offered to the Society for publication should be addressed to the Registrar at the Society's Rooms. Those intended for the Traiisactions must be communicated by a Fellow of the Society.

Meetings are held at the Society's Rooms on the first Wednesday in each month, except January (third Wednesday) and August (no meeting).

Particulars concerning the Fellowship can be obtained on application to the Registrar, 41, Queen's Gate, London, S.W. 7.

Handbooks for the Identipioation of Britise Inbeots. Parts now Available.

1. Part 2 Thysanura and Diplura. By M. J. Delany. 8 pp. 28, 6d.
" 5 Dermaptera and Orthoptera. By W. D. Hincks.
(Second edition). $\quad 24 \mathrm{pp} \quad 6 \mathrm{~s} .0 \mathrm{~d}$.
" 6 Plecoptera. By D. E. Kimmins. $\quad 18 \mathrm{pp} . \quad 3 \mathrm{~s} .6 \mathrm{~d}$.
". 9. Ephemeroptera. By D. E. Kimmins. 18 pp . 3s. 6 d.
, 10 Odonata. By F. C. Fraser. (Second edition).

49 pp . 10s. 0 d .
," 16 Siphonaptera. By F. G. A. M. Smit. 94 pp. 20s, od.
IV. " 1 Coleoptera : Introduction and Key to Families. By R. A. Crowson.
$59 \mathrm{pp} . \quad 10 \mathrm{~s} .0 \mathrm{~d}$.
„ 3 Coleoptera: Hydradephaga. By F. BalfourBrowne.
$34 \mathrm{pp} \quad$ 6s. 0 d .
" $8(a)$ Coleoptera : Staphylinidae (part). By C. E. Tottenham.

79 pp . 15s. 0 d.
" 9 Coleoptera: Pselaphidae. By E. J. Pearce. 32 pp . 6s. Od.
V. „ 7 Coleoptera: Coccinellidae and Sphindidae. $\begin{array}{lll}\text { By R. D. Pope. } & 12 \mathrm{pp} . & 2 \mathrm{~s} .6 \mathrm{~d} .\end{array}$
, 9 Coleoptera: Lagriidae to Meloidae. By F. D. Buck.
$30 \mathrm{pp} . \quad 6 \mathrm{~s} .0 \mathrm{~d}$.
, 11 Coleoptera: Scarabaeoidea, By E. B. Britton. 29 pp. 7s, 6d.
„ 12 Coleoptera: Cerambyoidae. By E, A. J. Duffy. 18 pp. 3s. 6d.
, 15 Coleoptera: Scolytidae and Platypodidae. By E. A. J. Duffy. $\quad 18 \mathrm{pp} . \quad$ 3s. 6 d.
VI. "1 Hymenoptera: Introduction and Key to Families. By 0. W. Richards. 94 pp. 20s. 0d,
, 2(a) Hymenoptera : Symphyta (part). By R. B. Benson.

47 pp . 10s. 0d.
" 2 (b) Hymenoptera : Symphyta (contd.), By R. B. Benson.

88 pp .15 s .0 d.
" 2(c) Hymenoptera : Symphyta (concl.). By R, B. Benson.

114 pp . 20s, 0d.
VIII. . $3(d)$ Hymenoptera: Proctotrupoidea (part). By G. E. J. Nixon, $\quad 107$ pp. 20s. 0d.

IX, " 1 Diptera: Introduction and Key to Families.
By H. Oldroyd. (Second edition). $\quad 49 \mathrm{pp} . \quad 7 \mathrm{~s} .6 \mathrm{~d}$.
" 2 Diptera: Nematocera (part). By R. L. Coe, Paul Freeman, P. F. Mattingly.
$216 \mathrm{pp}, \quad 20 \mathrm{~s} .0 \mathrm{~d}$.
X. n 1 Diptera: Syrphidae. By R. L. Coe. 98 pp. 17s. 6 d .
n 4(a) Diptera: Cyclorrhapha (part).
By F. I. van Emden.
134 pp .20 s .0 d.

[^0]: * Species of which no Z has been seen are marked in the keys with an asharish.

[^1]: ${ }^{1}$ Lindquist (1955 ; Notul. ent. $35: 35-50$) has distinguished 8 species in this complex from Finland, and, of these, 5 have so far been identified in British material. These species are difficult to distinguish, especially in the q, and external characters have yet to be satisfactorily correlated with the minute differences in the genitalia on which the specios are now based. The status of some of these species and their distributions and biologies require further studies.

